Astronomical School’s Report, 2019, Volume 15, Issue 1, Pages 19–24

https://doi.org/10.18372/2411-6602.15.04
Download PDF
UDC 521.82

Method of construction of three-dimensional mass distribution of hydrostatically introduced ellipsoidal planet

Fys М.М., Zazuliak P.M., Brydun A.M., Yurkiv M.I., Sohor A.R.

Lviv Polytechnic National University, 79013, Lviv, Karpinskyi street 6

Abstract

Formulas and relations for the realization of the method of construction of three-dimensional mass distribution of hydrostatically balanced ellipsoidal planet are derived. First, it is possible to interpret the anomalies of the external gravitational field by deviating the three-dimensional density of mass distribution from the hydrostatically balanced state. Second, conditions that provide a minimum of gravitational energy allow us to draw conclusions about the state of rest or dynamic changes in the middle of the body. Determining the conditions under which the planet is in a state of hydrostatic equilibrium, or deviation from it of the real body makes it possible to establish the causes of the mechanism of mass redistribution. This in turn provides the basis for the study and interpretation of dynamic processes in the mid-celestial body. The state of hydrostatic equilibrium allows to solve a number of problems of the astronomy and physics of the planets. Estimates of potential and energy values in the tectonosphere reveal the mechanisms that cause the movement of continental plates. It is known that the hydrostatic equilibrium condition is ensured by a minimum of gravitational energy E. In this case, the piecewise continuous mass distribution function is described by the expression through Legendre polynomials. The potential of the piecewise-continuous mass distribution function is uniformly convergent for the given class of functions. The expression for gravitational energy E depends on a given function δ0(ρ) and a fixed shape in the form of an ellipsoid. Therefore, the redistribution of the density produced by the change in the coefficients bmnk gives variations in the energy E. Also, the values bmnk are determined by the Stokes constants CNK, SNK. The minimum of gravitational energy E is defined as the problem for the conditional extremum of the Lagrange function. Its intersection with respect to magnitudes λnk, γnk, bpqs determines the mass distribution that gives the minimum energy E for a particular gravitational field. A detailed analysis of this system of equations leads to the conclusion that it is divided into eight groups formed by the corresponding Stokes constants. The solution of this system is obtained by using a sequence of matrix transformations to implement the above method. Thus, all the necessary formulas and ratios of the described method of construction of three-dimensional mass distribution of hydrostatically balanced ellipsoidal planet are presented, which allows to perform the necessary studies.

Keywords: three-dimensional mass distribution; hydrostatically equilibrated ellipsoidal planet; anomalies of the external gravitational field; condition of hydrostatic equilibrium; function of lump continuous mass distribution; Legendre polynomial; Stokes constant

References

  1. Zharkov V.N., Trubitsyn V.P. (1980). Fizika planetarnykh nedr. M: Nauka; Gl. red. fiz-mat. lit.. 448 p.
  2. Mescheryakov G.A. (1991). Zadachi teorii potentsiala i obobschennaya Zemlya. M.: Nauka. 216 p.
  3. Morits G. (1994). Figura Zemli: Teoreticheskaya geodeziya i vnutrennee stroenie Zemli. Kiev. 240 p.
  4. Fis M.M. (1982). O vychislenii model’nykh stoksovykh postoyannykh Zemli, sootvetstvuyuschikh predstavleniyu ee plotnosti chastnoy summoy obobschennogo ryada Fur’e. Geodeziya, kartografiya i aerofotos’emka, 103–107.
  5. Fys M.M., Nikulishyn V.I. (2009). Pro yedynyy alhorytm vyznachennia znachen’ hustyny, potentsi’alu ta enerhiyi odnovymirnoho rozpodilu mas elipsoyidal’noyi planety. Heodeziya, kartohrafiya ta aerofotoznimannia, 2009(71), 90–95.
  6. Fys M., Nikulishyn V., Pokotylo I. (2011). Metod doslidzhennia stanu hidrostatychnoyi rivnovahy tr’okhvymirnoyi elipsoyidal’noyi planety. XVI Mizhnarodnyy sympozi’um “Heoinformatsiynyy monitorynh navkolyshn’oho seredovyshcha: GPS i GIS-tekhnolohiyi” (12–17 veresnia 2011 r., Alushta, Krym)., 99–103.
  7. Fys M., Nikulishyn V., Pokotylo I. (2010). Metody aproksymatsiyi radi’al’nykh rozpodiliv hustyny mas planet mnohochlenamy Lezhandra i doslidzhennia yikh zbizhnosti. Materi’aly KHV mizhnarodnoho naukovo-tekhnichnoho sympozi’umu “Heoinformatsiynyy monitorynh navkolyshn’oho seredovyshcha GPS i GIS-tekhnolohiyi” (13–18 veresnia 2010 r., Alushta, Krym)., 258–259.
  8. Tserklevich A.L., Zayats’ O.S., Shilo Є.O. (2010). Dinamіka transformatsії fіguri Zemlі. Kinematika i fizika nebesnykh tel, 26(2), 59–73.
  9. Chandrasekkhar S. (1973). Ellipsoidal’nye figury ravnovesiya. M.: Mir. 288 p.
  10. Shen E.L. (1977). O variatsionnom podkhode k postroeniyu plotnostnoy modeli Zemli. Geofizichesky sbornik AN USSR, 44–77.
  11. Dzewonski A., Anderson D. (1981). Preliminary reference Earth model. Physics of the Earth and Planet Inter, 1981(25), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7

Download PDF