Astronomical School’s Report, 2016, Volume 12, Issue 2, Pages 96–100

https://doi.org/10.18372/2411-6602.12.2096
Download PDF
UDC 523.4 (045)

Features of determining the parameters of dynamic shapes and gravitational fields of planetary satellites

Yasenev S.O.

National Aviation University, Ukraine

Abstract

The problem of determining the dynamic shapes of planetary satellites becomes important today. The goal of this paper is to analyze the physical properties of satellites which are referred to planetoids. An analysis of planetary satellites as self-gravitating structures is performed, and parameters of their dynamic shapes are determined.

Keywords: moons of the planets; figure; gravitational field; shape; mass

References

  1. Zavizion O.V. (2001). Sravnenie metodov opisaniya vneshnikh gravitatsionnykh potentsialov nebesnykh tel. Radiofizika i radioastronomiya, 6(2), 101–104.
  2. Mescheryakov G.A., Tserklevich A.L. (1987). Gravitatsionnoe pole, figura i vnutrennee stroenie Marsa. K.: Naukova dumka. 240 p.
  3. Zharkov V.N. (2003). Geofizicheskie issledovaniya planet i sputnikov. Pervye chteniya im. O.Yu. Shmidta. – M.: OIFZ RAN, 2003. – 102 s. .
  4. Zharkov V.N., Leontjev V.V., Kozenko A.V. (1985). Models, figure, and gravitational moments of the Galilean satellites of Jupiter and icy satellites of Saturn. Icarus, 61, 92–100. https://doi.org/10.1016/0019-1035(85)90157-5
  5. Jeffreys H. (1962). The Earth. London: Cambridge Univ. Press. 420 p.
  6. Grushinsky N.P. (1976). Teoriya figury Zemli. M: Nauka. 512 p.
  7. Kulikov K.A., Sidorenko N.S. (1977). Planeta Zemlya. M: Nauka. 191 p.
  8. Estestvennye sputniki planet (informatsionnyy spravochnik) [Elektronny resurs], Rezhim dostupu: http://lnfm1.sai.msu.ru/neb/rw/natsat
  9. Myurrey K., Dermott S. (2010). Dinamika Solnechnoy sistemy. M: Fizmatlit. 588 p.
  10. Byalko A.V. (1989). Nasha planeta – Zemlya. M: Nauka. 240 p.
  11. Anderson J.D., Jacobson R.A., Lau E.L., et al. (2001). Io's gravity field and interior structure. Journal Geophys. Res. 2001. – 106., 963–969. https://doi.org/10.1029/2000je001367
  12. Anderson J.D., Schubert G., Jacobson R.A., et al. (1998). Europa's differentiated internal structure: Inferences from four Galileo encounters. Science, 281, 2019–2022. https://doi.org/10.1126/science.281.5385.2019
  13. Anderson J.D., Lau E.L., Sjorgen W.L., et al. (1996). Gravitational constrains on the internal structure of Ganimede. Nature, 384, 541–543.
  14. Anderson J.D., Jacobson R.A., McElrath T.P., et al. (2001). Shape, mean radius, gravity field, and interior structure of Callisto. Icarus, 153, 157–161. https://doi.org/10.1006/icar.2001.6664
  15. Kuskov O.L., Kronrod V.A. (2001). Core sizes and internal structure of Earth's and Jupiter's satellites. Icarus, 151, 204–227. https://doi.org/10.1006/icar.2001.6611
  16. Sohl F., Spohn T., Breuer D., et al. (2002). Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus, 157, 104–119. https://doi.org/10.1006/icar.2002.6828
  17. Bruce G., Francis N. (2011). Rotational dynamics and internal structure of Titan. Icarus, 214, 351–355. https://doi.org/10.1016/j.icarus.2011.04.028
  18. Williams J.G., Konopliv A.S., Boggs D.H., et al. (2014). Lunar interior properties from the GRAIL mission. Journal of Geophysical Research: Planets, 119, 1546–1578. https://doi.org/10.1002/2013je004559
  19. Barkin Yu.V. (2004). Comparative rotational dynamics of the Moon, Mercury and Titan. Astronomical and Astrophysical Transactions, 23(5), 481–492. https://doi.org/10.1080/10556790412331319659
  20. Hussmanna H., Sohlb F., Spohn T. (2006). Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-Neptunian objects. Icarus, 185, 258–273. https://doi.org/10.1016/j.icarus.2006.06.005

Download PDF