Astronomical School’s Report, 2016, Volume 12, Issue 2, Pages 96–100

Download PDF

UDC 523.4 (045)

Features of determining the parameters of dynamic shapes and gravitational fields of planetary satellites

Yasenev S.O.

Abstract

The problem of determining the dynamic shapes of planetary satellites becomes important today. The goal of this paper is to analyze the physical properties of satellites which are referred to planetoids. An analysis of planetary satellites as self-gravitating structures is performed, and parameters of their dynamic shapes are determined.

Keywords: moons of the planets; figure; gravitational field; shape; mass

References

  1. Zavizion O.V. (2001). Sravnenie metodov opisaniya vneshnikh gravitatsionnykh potentsialov nebesnykh tel. Radiofizika i radioastronomiya, 6(2), 101–104.
  2. Mescheryakov G.A., Tserklevich A.L. (1987). Gravitatsionnoe pole, figura i vnutrennee stroenie Marsa. K.: Naukova dumka. 240 p.
  3. Zharkov V.N. (2003). Geofizicheskie issledovaniya planet i sputnikov. Pervye chteniya im. O.Yu. Shmidta. – M.: OIFZ RAN, 2003. – 102 s. .
  4. Zharkov V.N., Leontjev V.V., Kozenko A.V. (1985). Models, figure, and gravitational moments of the Galilean satellites of Jupiter and icy satellites of Saturn. Icarus, 61, 92–100.
  5. Jeffreys H. (1962). The Earth. London: Cambridge Univ. Press. 420 p.
  6. Grushinsky N.P. (1976). Teoriya figury Zemli. M: Nauka. 512 p.
  7. Kulikov K.A., Sidorenko N.S. (1977). Planeta Zemlya. M: Nauka. 191 p.
  8. Estestvennye sputniki planet (informatsionnyy spravochnik) [Elektronny resurs]. Rezhim dostupu: http://lnfm1.sai.msu.ru/neb/rw/natsat
  9. Myurrey K., Dermott S. (2010). Dinamika Solnechnoy sistemy. M: Fizmatlit. 588 p.
  10. Byalko A.V. (1989). Nasha planeta Zemlya. – M: Nauka. 240 p.
  11. Anderson J.D., Jacobson R.A., Lau E.L., et al. (2001). Io's gravity field and interior structure. Journal Geophys. Res. 2001. – 106., 963–969.
  12. Anderson J.D., Schubert G., Jacobson R.A., et al. (1998). Europa's differentiated internal structure: Inferences from four Galileo encounters. Science, 281, 2019–2022.
  13. Anderson J.D., Lau E.L., Sjorgen W.L., et al. (1996). Gravitational constrains on the internal structure of Ganimede. Nature, 384, 541–543.
  14. Anderson J.D., Jacobson R.A., McElrath T.P., et al. (2001). Shape, mean radius, gravity field, and interior structure of Callisto. Icarus, 153, 157–161.
  15. Kuskov O.L., Kronrod V.A. (2001). Core sizes and internal structure of Earth's and Jupiter's satellites. Icarus, 151, 204–227.
  16. Sohl F., Spohn T., Breuer D., et al. (2002). Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus, 157, 104–119.
  17. Bruce G., Francis N. (2011). Rotational dynamics and internal structure of Titan. Icarus, 214, 351–355.
  18. Williams J.G., Konopliv A.S., Boggs D.H., et al. (2014). Lunar interior properties from the GRAIL mission. Journal of Geophysical Research: Planets, 119, 1546–1578.
  19. Barkin Yu.V. (2004). Comparative rotational dynamics of the Moon, Mercury and Titan. Astronomical and Astrophysical Transactions, 23(5), 481–492.
  20. Hussmanna H., Sohlb F., Spohn T. (2006). Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-Neptunian objects. Icarus, 185, 258–273.

Download PDF