Astronomical School’s Report, 2016, Volume 12, Issue 2, Pages 142–146

https://doi.org/10.18372/2411-6602.12.2142
Download PDF
UDC 519.62(45)

Constructing approximate solutions of differential equations using fundamental functions

Denysiuk V.P., Negodenko Е.V.

National Aviation University, Ukraine

Abstract

CONSTRUCTING APPROXIMATE SOLUTIONS OF DIFFERENTIAL EQUATIONS USING FUNDAMENTAL FUNCTIONS, by Denysiuk V.P., Negodenko Е.V. –– There was suggested a method of constructing approximate solutions of the first boundary problem for ordinary differential equations of the second order with variable coefficients in fundamental functions. An example is given; it is shown that the relative error of the solution has reduced after introduction of phantom nodes.

Keywords: interpolation; fundamental function; the Gibbs phenomenon; phantom nodes

References

  1. Dzyadyk V.K. (1977). Vvedenie v teoriyu ravnomernogo priblizheniya funktsy polinomami. M.: Nauka. 512 p.
  2. Denisyuk V.P. (2012). O nekotorykh metodakh uluchsheniya skhodimosti trigonometricheskikh ryadov Fur’e i interpolyatsionnykh trigonometricheskikh mnogochlenov. Journal of Qafqaz University, Mathematics and Computer Science, 2012(33).
  3. Zenkevich O., Morgan K. Konechnye elementy i approksimatsiya. M.: Mir, 1986, S.40–50.
  4. Fletcher K. (1988). Chislennye metody na osnove metoda Galerkina. M.: Mir. 352 p.
  5. Denysiuk V.P. Fundamental’ni funktsiyi ta tryhonometrychni splayny: Monohrafiya. K.: PAT “Vipol”, 2015, C.289–290.
  6. Khemming R.V. (1968). Chislennye metody. M.. 400 p.

Download PDF