Astronomical School’s Report, 2016, Volume 12, Issue 1, Pages 62–66
UDC 519.61(045)
Trigonometric splines and their applications to solve some problems of celestial mechanics
Denysiuk V.P., Negodenko Е.V.
National Aviation University, Ukraine
Abstract
There was suggested a method of constructing approximate solutions of the first boundary problem for ordinary differential equations of the second order with variable coefficients in trigonometric polynomials using the phantom nodes method. Unknown parameters are determined by collocation. An example is given; it is shown that the relative error of the solution has reduced times with the introduction of phantom nodes.
Keywords: celestial bodies; differential equations; phantom nodes; splines
References
- Bakanas E.S., Barabanov S.I., Bolgova G.T., Mikisha A.M., Rykhlova L.V., Smirnov M.A. (2003). Astronomichesky aspekt problemy kosmicheskoy zaschity Zemli. Trudy konferentsii “Okolozemnaya astronomiya”, 16–37.
- Bordovitsyna T.V. (1984). Sovremennye chislennye metody v zadachakh nebesnoy mekhaniki. M.: Nauka. 136 p.
- Denysiuk V.P. (2015). Fundamental’ni funktsiyi ta tryhonometrychni splayny: Monohrafiya. K: PAT “Vipol”. 296 p.
- Dzyadyk V.K. (1977). Vvedenie v teorіyu ravnomernogo priblizheniya funktsіy polinomami. M.: Nauka. 512 p.
- Khemming R. (1972). Chislennye metody. M.: Nauka. 400 p.
- Duboshin G.N. (1968). Nebesnaya mekhanika. Osnovnye zadachi i metody. M.: Nauka. 800 p.
- Subbotin M.F. (1968). Vvedenie v teoreticheskuyu astronomiyu. M.: Nauka. 800 p.
- Aksenov E.P. (1977). Teoriya dvizheniya iskusstvennykh sputnikov Zemli. M.: Nauka. 360 p.
- Shtifel’ E., Sheyfele G. (1975). Lineynaya i regulyarnaya nebesnaya mekhanika. M.: Nauka. 304 p.
- Everhart E. (1974). Implicit single-sequence methods for integrating orbits. Cel. Mech. Dyn. Astr., 10, 35–55. https://doi.org/10.1007/bf01261877
Download PDF