Astronomical School’s Report, 2013, Volume 9, Issue 2, Pages 180–184

https://doi.org/10.18372/2411-6602.09.2180
Download PDF
UDC 521.14

Refinement of the approximation of celestial bodies' gravitational field using polyhedra

Tereshchenko A.A.1, Zavizion O.V.2, Zheleznyak O.A.1

1National Aviation University, Ukraine
2Kyiv Cooperative Institute of Business and Law, Ukraine

Abstract

The polyhedral method is an effective computational approach to the approximation of the gravitational potential and attraction of an irregularly shaped body. Refinement of the approximation by means of the piecewise continuous interpolation of body's surface via Bézier patches is proposed.

Keywords: gravitational potential; polyhedron; Bézier surface

References

  1. Antonov V.A. (1978). Predstavlenie gravitatsionnogo polya planety potentsialom sistemy tochechnykh mass. Uch. zap. LGU., 145–155.
  2. Antonov V.A., Timoshkova E.I., Kholshevnikov K.V. (1988). Vvedenie v teoriyu n’yutonovskogo potentsiala. M.: Nauka. 272 p.
  3. Zavizion O.V. (2000). Samohravituyuchi dysky yak zasoby opysannia zovnishnikh hravitatsiynykh poliv nebesnykh til. Kynemat. y fyz. nebes. tel., 16(5), 477–480.
  4. Zavizion O.V. (2001). Pro vyznachennia hustyny ekvihravituyuchykh sterzhniv, za dopomohoyu yakykh opysuyet’sia zovnishnie hravitatsiyne pole planet-hyhantiv. Kynemat. y fyz. nebes. tel., 17(1), 89–92.
  5. Zavizion O.V. (2001). Sravnenie metodov opisaniya vneshnikh gravitatsionnykh potentsialov nebesnykh tel. Radiofizika i radioastronomiya, 6(2), 101–104.
  6. Kislik M.D. (1994). Approksimatsiya potentsialov sil prityazheniya planet. Astron. zh., 71(6), 950–952.
  7. Kondrat’ev B.P. (2003). Teoriya potentsiala i figury ravnovesiya. Moskva-Izhevsk: Institut komp’yuternykh issledovany. 624 p.
  8. Marchenko A.N. (1980). Model’ tochechnykh mass global’nogo gravitatsionnogo polya Zemli. Geodeziya, kartografiya i aerofotos’emka, 81–89.
  9. Mescheryakov G.A., Marchenko A.N. (1979). O novom podkhode k predstavleniyu gravitatsionnogo potentsiala planety potentsialom sistemy tochechnykh mass. Astron. vestnik., 13(4), 193–201.
  10. Sretensky L.N. Teoriya n’yutonovskogo potentsiala. M.: OGIZ-Gostekhizdat, 1946.
  11. Farin G. (2002). Curves and surfaces for CAGD. A practical guide. Morgan-Kaufmann. 499 p.
  12. Hagen H. (ed.) (1992). Curve and surface design. SIAM. 205 p.
  13. Holstein H. (2002). Invariance in gravimagnetic anomaly formulas for uniform polyhedra. Geophysics, 1134–1137. https://doi.org/10.1190/1.1500374
  14. Pohánka V. (1998). Optimum expression for computation of the gravity field of a polyhedral body with linearly increasing density. Geophys. Prospect., 46, 391–404. https://doi.org/10.1046/j.1365-2478.1998.960335.x
  15. Prutkin H.I., Tenzer R. (2009). The optimum expression for the gravitational potential of polyhedral bodies having a linearly varying density distribution. J. Geod., 83, 1163–1170. https://doi.org/10.1007/s00190-009-0334-1
  16. Salomon D. (2011). The computer graphics manual. Springer. 1556 p. https://doi.org/10.1007/978-0-85729-886-7
  17. Sapidis N.S. (ed.) Designing fair curves and surfaces. Shape quality in geometric modelling and computer-aided design. SIAM, 1994. https://doi.org/10.1137/1.9781611971521
  18. Shirman L.A. (1990). Construction of smooth curves and surfaces from polyhedral models. University of California. 208 p.
  19. Werner R. (1994). The gravitational potential of a homogeneous polyhedron or don't cut corners. Cel. Mech. Dyn. Astr., 59, 253–278. https://doi.org/10.1007/bf00692875
  20. Werner R.A., Scheeres D.J. (1997). Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Cel. Mech. Dyn. Astr., 65, 313–344. https://doi.org/10.1007/bf00053511

Download PDF