Astronomical School’s Report, 2012, Volume 8, Issue 1, Pages 66–70
UDC 530.12
Cosmological model with perfect fluid
Iegurnov O.O., Korkina M.P.
Dnipropetrovsk National University, Ukraine
Abstract
The cosmological model with perfect fluid is considered. We suppose that this model is homogeneous and anisotropic. The analysis of the spatial curvature tensor invariants showed that they have no singularities and depends on arbitrary function ζ(t) and have no singularities. Construction of the model is based on the following boundary conditions: 1) As initial conditions we choose the Big Bang, the corresponding Friedman model. We also suppose that at initial moment of time we have ultrarelativistic state equation. 2) When t→∞ describing metric turns into Robertson–Milne metric.
Keywords: cosmological model; spatial curvature tensor
References
- Burlikov V.V., Korkina M.P. (1998). Odnorodnye sfericheskie konfiguratsii peremennoy prostranstvennoy krivizny. Izvestiya vuzov. Fizika., 1998(3), 12–17.
- Korkina M.P. (1995). Uravneniya Eynshteyna dlya zhidkoy sfery i massovaya funktsiya. Izvestiya vuzov. Fizika., 1995(4), 90–95.
- Landau L.D., Lifshits E.M. Teoriya polya. M.: Nauka, 1973, P. 343.
- Mizner Ch., Torn K., Uiller Dzh. Gravitatsiya. Vol. 1. M.: Mir, 1977, C. 273.
- Boots S.V., Burlikov V.V., Korkina M.P. (1996). Model of a fluid sphere with the ultrarelativistic equation of state at the center. Gravitation and Cosmology, 2(2(6)), 167–173.
- Cook M.W. (1975). On a Class of Exact Spherically Symmetric Solutions to the Einstein Gravitation Field Equations. Aust. J. Phys., 28, 413–422. https://doi.org/10.1071/ph750413
- Kramer D., Stephani H., Mac-Callum M.A.H., Herlt E. Exact Solutions of Einstein's Field Equations. Cambridge, 1980, P.416.
Download PDF