Astronomical School’s Report, 2016, Volume 12, Issue 2, Pages 153–165

Download PDF

UDC 523.98

The role of the alpha effect of Babcock–Leighton in the generation of poloidal magnetic field of the Sun

Krivodubskij V.N.


The paper reviews recent studies of cyclicity of magnetic activity of the Sun based on the αΩ-dynamo model. It is noted that there is a functional dependence between the observed values of the poloidal BP and toroidal BT magnetic fields. This allows predicting the amplitude and the strength of cycle for the measured field BP at the beginning of the cycle. Nevertheless, for a long time no positive correlations between the characteristics of sunspots cycle (Wolf number or the total area of spots) and polar magnetic flux at the end of the cycle were found. As it turned out later, this was due to the fact that the α-effect of Babcock–Leighton, defined by tilt angles of the bipolar magnetic fields, turbulent diffusion and meridional circulation, leading to regeneration of the poloidal field, is characterized by random fluctuations in time and space. The situation changed drastically after the parameter of magnetic strength of cycle was introduced, which is a product of the area of spots cycle and tilt angles of the bipolar magnetic groups. Within the framework of the αΩ-dynamo this indicates that the surface α effect of Babcock–Leighton leads to the generation of the poloidal magnetic field at the end of the current cycle, and its assimilated parameter is an integral component of future forecasts based on the solar dynamo models. Relying on the data which cover the time span of more than a century, recent studies have established that the memory interval of cycle is limited only by one cycle.

Keywords: solar activity; magnetic fields; turbulence; sunspots; activity cycles; dynamo model; predictions of solar activity; memory span of cycle


  1. Schwenn R. (2006). Space weather: The solar perspective. Living Rev. Solar Phys., 3(2), 1–72.
  2. Pulkkinen T. (2007). Space weather: Terrestrial perspective. Living Rev. Solar Phys., 4(1), 1–60.
  3. Stix M. (1981). Theory of the solar cycle. Solar Phys, 74, 79–101.
  4. Rüdiger G., Arlt R. (2002). Physics of solar cycle. In: Advances in nonlinear dynamos / The Fluid Mechanics of Astrophysics and Geophysics, 9, 147–191.
  5. Fan Y. (2009). Magnetic fields in the solar convection zone. Living Rev. Solar Phys., 6(4), 1–96.
  6. Charbonneau P. (2010). Dynamo models of the solar cycle. Living Rev. Solar Phys., 7(3), 1–91.
  7. Petrovay K. (2010). Solar Cycle Prediction. Living Rev. Solar Phys., 7(6), 1–59.
  8. Pesnel W.D. (2011). Solar Cycle Predictions (Invited Review). Solar Phys, 281(1), 507–532.
  9. Choudhuri A.R. (2011). Origin of solar magnetism. The Physics of Sun and Star Spots. Proceed IAU Symp., 273, 28–36.
  10. Krivodubskij V.N. (2013). On the extended 23rd solar cycle. Solar and Astrophysical Dynamos and Magnetic Activity. Proceed. IAU Symp., 293, 69–70.
  11. Krivodubskij V.N., Lozitska N.I. (2013). Dependence of solar cycles duration on the magnitude of the annual module of the sunspots magnetic field. Solar and Astrophysical Dynamos and Magnetic Activity. Proceed. IAU Symp., 294, 71–72.
  12. Hathaway D.H. (2015). The solar cycle. Living Rev. Solar Phys., 12(4), 1–87.
  13. Cameron R.H., Dikpati M., Brandenburg A. (2016). The global solar dynamo. Space Science Rev.
  14. Usoskin I.G. (2013). A history of solar activity over millennia. Living Rev. Solar Phys..
  15. Balmaceda L.A., Solanki S.A., Krivova N.A., Foster S. (2009). A homogeneous database of sunspot areas covering more than 130 years. J. Geophys. Res..
  16. Jiang J., Cameron R.H., Schmitt D., Schüssler M. (2011). The solar magnetic field since 1700. I. Characteristics of sunspot group emergence and reconstruction of the butterfly diagram. Astron. Astrophys..
  17. Jiang J., Cameron R.H., Schmitt D., Schüssler M. (2011). The solar magnetic field since 1700. II. Physical reconstruction of total, polar and open flux. Astron. Astrophys..
  18. Muñoz-Jaramillo A., Sheeley N.R., Zhang J., DeLuca E.E. (2012). Calibrating 100 years of polar faculae measurements: implications for the evolution of the heliospheric magnetic field. Astrophys. J., 753(2).
  19. Moffat H.K. Magnetic Field Generation in Electrically Conducting Fluids. London-New York-Melbourne: Cambridge University Press, 1978.
  20. Parker E.N. Cosmical Magnetic Fields. Oxford: Clarendon Press, 1979.
  21. Krause F., Rädler K.-H. (1980). Mean Field Magneto-Hydrodynamics and Dynamo Theory. Academic Verlag: Berlin. 271 p.
  22. Vaynshteyn S.I., Zel’dovich Ya.B., Ruzmaykin A.A. (1980). Turbulentnoe dinamo v astrofizike. M.: Nauka. 352 p.
  23. Priest E.R. Solar Magneto-Hydrodynamics. Dordrech–Boston–London: D. Reidel Publishing Company, 1982.
  24. Zeldovich Ya.B., Ruzmaikin A.A., Sokoloff D.D. Magnetic Fields in Astrophysics. New York: Gordon and Breach, 1983.
  25. Ossendrijver M. (2003). The solar dynamo. Astron. Astrophys. Rev., 11(4), 287–367.
  26. Parker E.N. (1955). The formation of sunspots from the solar toroidal field. Astrophys. J., 121, 491–507.
  27. Steenbeck M., Krause F. (1966). The generation of stellar and planetary magnetic fields by turbulent dynamo action. Zeits. Naturforsch., 21a, 1285–1296.
  28. Steenbeck M., Krause F., Rädler K.-H. (1966). A calculation of the mean electromotive force in electrically conducting fluid in turbulent motion, under the influence of Coriolis forces. Zeits. Naturforsch., 21a, 369–376.
  29. Shteenbek M., Kirko I.M., Gaylitis A. i dr. (1968). Eksperimental’noe obnaruzhenie elektrodvizhuschey sily vdol’ vneshnego magnitnogo polya, indutsirovannoy techeniem zhidkogo metalla (α-effekt). DAN SSSR, 180(2), 326–329.
  30. Schmitt D. (1987). An alpha-omega-dynamo with an alpha-effect due to magnetostrophic waves. Astron. Astrophys., 174(1–2), 281–287.
  31. Dikpati M., Gilman P.A. (2001). Flux-transport dynamos with α-effect from global instability of tachocline differential rotation: a solution for magnetic parity selection in the Sun. Astrophys. J., 559(1), 428–442.
  32. Babcosk H.W. (1961). The topology of the Sun's magnetic field and the 22 year cycle. Astrophys. J., 133, 572–1033.
  33. Leighton R.B. (1969). A magneto-kinematic model of the solar cycle. Astrophys. J., 156, 1–26.
  34. Krivodubskij V.N. (1998). Rotational anisotropy and magnetic quenching of gyrotropic turbulence in the solar convective zone. Astron. Reports..
  35. Krivodubskij V.N. (2015). Small scale alpha-squared effect in the solar convection zone. Kinematics and Physics of Celestial Bodies, 31(2), 55–64.
  36. Erofeev D.V. (2004). An observational evidence for the Babcock-Leighton dynamo scenario. Multi-Wavelength Investigations of Solar Activity. Proceed. IAU Symp., 223, 97–98.
  37. Dasi-Espuig M., Solanki S.K., Krivova N.A., Cameron R., Peñuela T. (2010). Sunspot group tilt angles and the strength of the solar cycle. Astron. Astrophys..
  38. Kitchatinov L.L., Olemskoy S.V. (2011). Does the Babcock-Leighton mechanism operate on the Sun? Astron. Lett., 37, 656–658.
  39. Kitchatinov L.L., Olemskoy S.V. (2011). Alleviation of catastrophic quenching in solar dynamo model with nonlocal alpha-effect. Astron. Nachrichten., 332(5), 496–501.
  40. Olemskoy S.V., Choudhuri A.R., Kitchatinov L.L. (2013). Fluctuations in the alpha-effect and grand solar minima. Astron. Reports., 57(6), 458–468.
  41. Kitchatinov L.L. (2014). The solar dynamo: Inferences from observations and modelling. Geomagnetism. Aeronomy., 54, 867–876.
  42. Krivodubskij V.N. (2001). The structure of the global solar magnetic field excited by the turbulent dynamo mechanism. Astron. Reports., 45, 738–745.
  43. Krivodubskij V.N. (2005). Turbulent dynamo near tachocline and reconstruction of azimuthal magnetic field in the solar convection zone. Astron. Nachrichten., 326(1), 61–74.
  44. Bumba V., Howard R. (1965). Solar magnetic fields. Science, 149(3690), 1331–1337.
  45. Howard R. (1967). Magnetic field of the Sun (observational). Ann. Rev. Astron. Astrophys., 5, 1.
  46. Svalgaard L., Cliver E.W., Kamide Y. (2005). Sunspot cycle 24: Smallest cycle in 100 years? Geophys. Research Lett., 32(1. – CiteID L01104).
  47. Miesch M.S. (2005). Large-scale dynamics of the convection zone and tachocline. Living Rev. Solar Phys., 2(1), 1–139.
  48. Kozak L.V., Kostyk R.I., Cheremnykh O.K. (2013). Dva rezhima turbulentnosti na Solntse. Kinematika i fizika nebes. tel., 29(2), 22–29.
  49. Hale G.E., Ellerman F., Nicholson S.B., Joy A.H. (1919). The magnetic polarity of sun-spots. Astrophys. J., 49, 153–186.
  50. Wang Y.-M., Sheeley N.R., Jr. (1989). Average properties of bipolar magnetic regions during sunspot cycle 21. Solar Phys, 81–100.
  51. Kosovichev A.G., Stenflo J.O. (2008). Tilt of emerging bipolar magnetic regions on the Sun. Astrophys. J. Lett., 688(2), L115–L118.
  52. Komm R.W., Howard R.F., Harvey J.W. (1993). Meridional flow of small photospheric magnetic features. Solar Phys, 147(2), 207–223.
  53. Wang Y.-M., Nash A.G., Sheeley N.R., Jr. (1989). Magnetic flux transport on the Sun. Science, 245, 712–718.
  54. Wang Y.-M., Nash A.G., Sheeley N.R., Jr. (1989). Evolution of the Sun's polar fields during sunspot cycle 21 – Poleward surges and long-term behavior. Astrophys. J., 347, 529–538.
  55. Howard R.F. (1996). Solar active regions as diagnostics of subsurface conditions. Annual Rev. Astron. Astrophys., 34, 75–110.
  56. Schatten K.H., Scherrer P.H., Svalgaard L., Wilcox J.M. (1978). Using dynamo theory to predict the sunspot number during cycle 21. Geophys. Res. Lett., 5, 411–414.
  57. Jiang J., Chatterjee P., Choudhuri A.R. (2007). Solar activity forecast with a dynamo model. MNRAS, 381(4), 1527–1542.
  58. Makarov V.I., Tlatov A.G. (2000). Large-scale magnetic field and sunspot cycles. Astron. Reports., 44, 759–764.
  59. Makarov V.I., Tlatov A.G., Callebaut D.K., Obridko V.N., Shelting B.D. (2001). Large-scale magnetic field and sunspot cycles. Solar Phys, 198(2), 409–421.
  60. Muñoz-Jaramillo A., Dasi-Espuig M., Balmaceda L.A., DeLuca E.E. (2013). Solar cycle propagation, memory, and prediction: insights from a century of magnetic proxies. Astrophys. J. Lett., 767, L25.
  61. Choudhuri A.R., Chatterjee P., Jiang J. (2007). Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett., 98(13. – id. 131103).
  62. Cameron R., Schüssler M. (2015). The crucial role of surface magnetic fields for the solar dynamo. Science, 347(6228), 1333–1335.
  63. Dikpati M., Gilman P.A. (2006). Simulating and predicting solar cycles using a flux-transport dynamo. Astrophys. J., 649, 498–514.
  64. Nandy D., Muñoz-Jaramillo A., Martens P.C.H. (2011). The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations. Nature, 471(7336), 80–82.
  65. Pipin V.V., Kosovichev A.G. (2013). The mean-field solar dynamo with a double cell meridional circulation pattern. Astrophys. J..
  66. Tlatov A., Illarionov E., Sokoloff D., Pipin V. (2013). A new dynamo pattern revealed by the tilt angle of bipolar sunspot groups. MNRAS, 432(4), 2975–2984.
  67. Zhao J., Bogart R.S., Kosovichev A.G., Duvall T.L., Jr., Hartlep T. (2013). Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun. Astrophys. J. Lett., 774(2), L29–L34.
  68. Belucz B., Dikpati M., Forgács-Dajka E. (2015). A Babcock-Leighton solar dynamo model with multi-cellular meridional circulation in advection- and diffusion-dominated regimes. Astrophys. J., 806(2).
  69. Jiang J., Cameron R.H., Schüssler M. (2015). The case of the weak solar cycle 24. Astrophys. J. Lett..
  70. Charbonneau P., Barlet G. (2011). The dynamo basis of solar cycle precursor schemes. J. Atmospheric and Solar-Terrestrial Phys., 73(2–3), 198–206.
  71. Kitiashvili I., Kosovichev A.G. (2008). Application of data assimilation method for predicting solar cycles. Astrophys. J., 688, L49–L52.
  72. Kitiashvili I., Kosovichev A.G. (2009). Nonlinear dynamical modeling of solar cycles using dynamo formulation with turbulent magnetic helicity. Geophys. Astrophys. Fluid Dynamics., 103(1), 53–68.
  74. Moss D., Sokoloff D., Usoskin I., Tutubalin V. (2008). Solar grand minima and random fluctuations in dynamo parameters. Solar Phys, 250(2), 221–234.
  76. Dikpati M., Gilman P.A., MacGregor K.B. (2006). Penetration of dynamo-generated magnetic fields into the Sun's radiative interior. Astrophys. J., 638(1), 564–575.
  77. Dikpati M., De Toma G., Gilman P.A. (2006). Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett, 5110.
  78. Hotta H., Yokoyama T. (2010). Importance of surface turbulent diffusivity in the solar flux-transport dynamo. Astrophys. J., 709(2), 1009–1017.
  79. Krivodubsky V.N. (1982). O turbulentnoy provodimosti i magnitnoy pronitsaemosti solnechnoy plazmy. Soln. dannye., 1982(7), 99–109.
  80. Krivodubskij V.N. (2012). Turbulent effects of sunspot magnetic field reconstruction. Kinematics and Physics of Celestial Bodies, 28(5), 232–238.
  81. Yeates A.R., Nandy D., Mackay D.H. (2008). Exploring the physical basis of solar cycle predictions: flux transport dynamics and persistence of memory in advection- versus diffusion-dominated solar convection zones. Astrophys. J., 673(1), 544–556.
  82. Karak B.B., Nandy D. (2012). Turbulent pumping of magnetic flux reduces solar cycle memory and thus impacts predictability of the Sun's activity. Astrophys. J. Lett., 761(1), L13–L17.
  83. Tobias S.M., Brummell N.H., Clune T.L., Toomre J. (2001). Transport and storage of magnetic field by overshooting turbulent compressible. Astrophys. J., 549(2), 1183–1203.
  84. Solanki S.K., Krivova N.A., Schüssler M., Fligge M. (2002). Search for a relationship between solar cycle amplitude and length. Astron. Astrophys., 396, 1029–1035.
  85. Guerrero G., De Gouveia Dal Pino E.M. (2008). Turbulent magnetic pumping in a Babcock–Leighton solar dynamo model. Astron. Astrophys., 485(1), 267–273.

Download PDF