Astronomical School’s Report, 2016, Volume 12, Issue 2, Pages 153–165

https://doi.org/10.18372/2411-6602.12.2153
Download PDF
UDC 523.98

The role of the alpha effect of Babcock–Leighton in the generation of poloidal magnetic field of the Sun

Krivodubskij V.N.

Astronomical Observatory, Kyiv Shevchenko National University, Ukraine

Abstract

The paper reviews recent studies of cyclicity of magnetic activity of the Sun based on the αΩ-dynamo model. It is noted that there is a functional dependence between the observed values of the poloidal BP and toroidal BT magnetic fields. This allows predicting the amplitude and the strength of cycle for the measured field BP at the beginning of the cycle. Nevertheless, for a long time no positive correlations between the characteristics of sunspots cycle (Wolf number or the total area of spots) and polar magnetic flux at the end of the cycle were found. As it turned out later, this was due to the fact that the α-effect of Babcock–Leighton, defined by tilt angles of the bipolar magnetic fields, turbulent diffusion and meridional circulation, leading to regeneration of the poloidal field, is characterized by random fluctuations in time and space. The situation changed drastically after the parameter of magnetic strength of cycle was introduced, which is a product of the area of spots cycle and tilt angles of the bipolar magnetic groups. Within the framework of the αΩ-dynamo this indicates that the surface α effect of Babcock–Leighton leads to the generation of the poloidal magnetic field at the end of the current cycle, and its assimilated parameter is an integral component of future forecasts based on the solar dynamo models. Relying on the data which cover the time span of more than a century, recent studies have established that the memory interval of cycle is limited only by one cycle.

Keywords: solar activity; magnetic fields; turbulence; sunspots; activity cycles; dynamo model; predictions of solar activity; memory span of cycle

References

  1. Schwenn R. (2006). Space weather: The solar perspective. Living Rev. Solar Phys., 3(2), 1–72. https://doi.org/10.12942/lrsp-2006-2
  2. Pulkkinen T. (2007). Space weather: Terrestrial perspective. Living Rev. Solar Phys., 4(1), 1–60. https://doi.org/10.12942/lrsp-2007-1
  3. Stix M. (1981). Theory of the solar cycle. Solar Phys, 74, 79–101. https://doi.org/10.1007/bf00151277
  4. Rüdiger G., Arlt R. (2002). Physics of solar cycle. In: Advances in nonlinear dynamos / The Fluid Mechanics of Astrophysics and Geophysics, 9, 147–191. https://doi.org/10.1201/9780203493137.ch6
  5. Fan Y. (2009). Magnetic fields in the solar convection zone. Living Rev. Solar Phys., 6(4), 1–96. https://doi.org/10.12942/lrsp-2009-4
  6. Charbonneau P. (2010). Dynamo models of the solar cycle. Living Rev. Solar Phys., 7(3), 1–91. https://doi.org/10.12942/lrsp-2010-3
  7. Petrovay K. (2010). Solar Cycle Prediction. Living Rev. Solar Phys., 7(6), 1–59. https://doi.org/10.12942/lrsp-2010-6
  8. Pesnel W.D. (2011). Solar Cycle Predictions (Invited Review). Solar Phys, 281(1), 507–532.
  9. Choudhuri A.R. (2011). Origin of solar magnetism. The Physics of Sun and Star Spots. Proceed IAU Symp., 273, 28–36.
  10. Krivodubskij V.N. (2013). On the extended 23rd solar cycle. Solar and Astrophysical Dynamos and Magnetic Activity. Proceed. IAU Symp., 293, 69–70. https://doi.org/10.1017/s174392131300224x
  11. Krivodubskij V.N., Lozitska N.I. (2013). Dependence of solar cycles duration on the magnitude of the annual module of the sunspots magnetic field. Solar and Astrophysical Dynamos and Magnetic Activity. Proceed. IAU Symp., 294, 71–72. https://doi.org/10.1017/s1743921313002251
  12. Hathaway D.H. (2015). The solar cycle. Living Rev. Solar Phys., 12(4), 1–87.
  13. Cameron R.H., Dikpati M., Brandenburg A. (2016). The global solar dynamo. Space Science Rev. https://doi.org/10.1007/s11214-015-0230-3
  14. Usoskin I.G. (2013). A history of solar activity over millennia. Living Rev. Solar Phys.. https://doi.org/10.12942/lrsp-2013-1
  15. Balmaceda L.A., Solanki S.A., Krivova N.A., Foster S. (2009). A homogeneous database of sunspot areas covering more than 130 years. J. Geophys. Res.. https://doi.org/10.1029/2009ja014299
  16. Jiang J., Cameron R.H., Schmitt D., Schüssler M. (2011). The solar magnetic field since 1700. I. Characteristics of sunspot group emergence and reconstruction of the butterfly diagram. Astron. Astrophys.. https://doi.org/10.1051/0004-6361/201016167
  17. Jiang J., Cameron R.H., Schmitt D., Schüssler M. (2011). The solar magnetic field since 1700. II. Physical reconstruction of total, polar and open flux. Astron. Astrophys.. https://doi.org/10.1051/0004-6361/201016168
  18. Muñoz-Jaramillo A., Sheeley N.R., Zhang J., DeLuca E.E. (2012). Calibrating 100 years of polar faculae measurements: implications for the evolution of the heliospheric magnetic field. Astrophys. J., 753(2). https://doi.org/10.1088/0004-637x/753/2/146
  19. Moffat H.K. Magnetic Field Generation in Electrically Conducting Fluids. London-New York-Melbourne: Cambridge University Press, 1978.
  20. Parker E.N. Cosmical Magnetic Fields. Oxford: Clarendon Press, 1979.
  21. Krause F., Rädler K.-H. (1980). Mean Field Magneto-Hydrodynamics and Dynamo Theory. Academic Verlag: Berlin. 271 p.
  22. Vaynshteyn S.I., Zel’dovich Ya.B., Ruzmaykin A.A. (1980). Turbulentnoe dinamo v astrofizike. M.: Nauka. 352 p.
  23. Priest E.R. Solar Magneto-Hydrodynamics. Dordrech–Boston–London: D. Reidel Publishing Company, 1982.
  24. Zeldovich Ya.B., Ruzmaikin A.A., Sokoloff D.D. Magnetic Fields in Astrophysics. New York: Gordon and Breach, 1983.
  25. Ossendrijver M. (2003). The solar dynamo. Astron. Astrophys. Rev., 11(4), 287–367.
  26. Parker E.N. (1955). The formation of sunspots from the solar toroidal field. Astrophys. J., 121, 491–507. https://doi.org/10.1086/146010
  27. Steenbeck M., Krause F. (1966). The generation of stellar and planetary magnetic fields by turbulent dynamo action. Zeits. Naturforsch., 21a, 1285–1296.
  28. Steenbeck M., Krause F., Rädler K.-H. (1966). A calculation of the mean electromotive force in electrically conducting fluid in turbulent motion, under the influence of Coriolis forces. Zeits. Naturforsch., 21a, 369–376.
  29. Shteenbek M., Kirko I.M., Gaylitis A. i dr. (1968). Eksperimental’noe obnaruzhenie elektrodvizhuschey sily vdol’ vneshnego magnitnogo polya, indutsirovannoy techeniem zhidkogo metalla (α-effekt). DAN SSSR, 180(2), 326–329.
  30. Schmitt D. (1987). An alpha-omega-dynamo with an alpha-effect due to magnetostrophic waves. Astron. Astrophys., 174(1–2), 281–287.
  31. Dikpati M., Gilman P.A. (2001). Flux-transport dynamos with α-effect from global instability of tachocline differential rotation: a solution for magnetic parity selection in the Sun. Astrophys. J., 559(1), 428–442. https://doi.org/10.1086/322410
  32. Babcosk H.W. (1961). The topology of the Sun's magnetic field and the 22 year cycle. Astrophys. J., 133, 572–1033.
  33. Leighton R.B. (1969). A magneto-kinematic model of the solar cycle. Astrophys. J., 156, 1–26.
  34. Krivodubskij V.N. (1998). Rotational anisotropy and magnetic quenching of gyrotropic turbulence in the solar convective zone. Astron. Reports..
  35. Krivodubskij V.N. (2015). Small scale alpha-squared effect in the solar convection zone. Kinematics and Physics of Celestial Bodies, 31(2), 55–64. https://doi.org/10.3103/s0884591315020038
  36. Erofeev D.V. (2004). An observational evidence for the Babcock-Leighton dynamo scenario. Multi-Wavelength Investigations of Solar Activity. Proceed. IAU Symp., 223, 97–98. https://doi.org/10.1017/s1743921304005228
  37. Dasi-Espuig M., Solanki S.K., Krivova N.A., Cameron R., Peñuela T. (2010). Sunspot group tilt angles and the strength of the solar cycle. Astron. Astrophys.. https://doi.org/10.1051/0004-6361/201014301
  38. Kitchatinov L.L., Olemskoy S.V. (2011). Does the Babcock-Leighton mechanism operate on the Sun? Astron. Lett., 37, 656–658. https://doi.org/10.1134/s0320010811080031
  39. Kitchatinov L.L., Olemskoy S.V. (2011). Alleviation of catastrophic quenching in solar dynamo model with nonlocal alpha-effect. Astron. Nachrichten., 332(5), 496–501. https://doi.org/10.1002/asna.201011549
  40. Olemskoy S.V., Choudhuri A.R., Kitchatinov L.L. (2013). Fluctuations in the alpha-effect and grand solar minima. Astron. Reports., 57(6), 458–468. https://doi.org/10.1134/s1063772913050065
  41. Kitchatinov L.L. (2014). The solar dynamo: Inferences from observations and modelling. Geomagnetism. Aeronomy., 54, 867–876. https://doi.org/10.1134/s0016793214070056
  42. Krivodubskij V.N. (2001). The structure of the global solar magnetic field excited by the turbulent dynamo mechanism. Astron. Reports., 45, 738–745. https://doi.org/10.1134/1.1398923
  43. Krivodubskij V.N. (2005). Turbulent dynamo near tachocline and reconstruction of azimuthal magnetic field in the solar convection zone. Astron. Nachrichten., 326(1), 61–74. https://doi.org/10.1002/asna.200310340
  44. Bumba V., Howard R. (1965). Solar magnetic fields. Science, 149(3690), 1331–1337. https://doi.org/10.1126/science.149.3690.1331
  45. Howard R. (1967). Magnetic field of the Sun (observational). Ann. Rev. Astron. Astrophys., 5, 1. https://doi.org/10.1146/annurev.aa.05.090167.000245
  46. Svalgaard L., Cliver E.W., Kamide Y. (2005). Sunspot cycle 24: Smallest cycle in 100 years? Geophys. Research Lett., 32(1. – CiteID L01104). https://doi.org/10.1029/2004gl021664
  47. Miesch M.S. (2005). Large-scale dynamics of the convection zone and tachocline. Living Rev. Solar Phys., 2(1), 1–139. https://doi.org/10.12942/lrsp-2005-1
  48. Kozak L.V., Kostyk R.I., Cheremnykh O.K. (2013). Dva rezhima turbulentnosti na Solntse. Kinematika i fizika nebes. tel., 29(2), 22–29.
  49. Hale G.E., Ellerman F., Nicholson S.B., Joy A.H. (1919). The magnetic polarity of sun-spots. Astrophys. J., 49, 153–186. https://doi.org/10.1086/142452
  50. Wang Y.-M., Sheeley N.R., Jr. (1989). Average properties of bipolar magnetic regions during sunspot cycle 21. Solar Phys, 81–100. https://doi.org/10.1007/bf00146521
  51. Kosovichev A.G., Stenflo J.O. (2008). Tilt of emerging bipolar magnetic regions on the Sun. Astrophys. J. Lett., 688(2), L115–L118. https://doi.org/10.1086/595619
  52. Komm R.W., Howard R.F., Harvey J.W. (1993). Meridional flow of small photospheric magnetic features. Solar Phys, 147(2), 207–223. https://doi.org/10.1007/bf00690713
  53. Wang Y.-M., Nash A.G., Sheeley N.R., Jr. (1989). Magnetic flux transport on the Sun. Science, 245, 712–718. https://doi.org/10.1126/science.245.4919.712
  54. Wang Y.-M., Nash A.G., Sheeley N.R., Jr. (1989). Evolution of the Sun's polar fields during sunspot cycle 21 – Poleward surges and long-term behavior. Astrophys. J., 347, 529–538. https://doi.org/10.1086/168143
  55. Howard R.F. (1996). Solar active regions as diagnostics of subsurface conditions. Annual Rev. Astron. Astrophys., 34, 75–110. https://doi.org/10.1146/annurev.astro.34.1.75
  56. Schatten K.H., Scherrer P.H., Svalgaard L., Wilcox J.M. (1978). Using dynamo theory to predict the sunspot number during cycle 21. Geophys. Res. Lett., 5, 411–414. https://doi.org/10.1029/gl005i005p00411
  57. Jiang J., Chatterjee P., Choudhuri A.R. (2007). Solar activity forecast with a dynamo model. MNRAS, 381(4), 1527–1542. https://doi.org/10.1111/j.1365-2966.2007.12267.x
  58. Makarov V.I., Tlatov A.G. (2000). Large-scale magnetic field and sunspot cycles. Astron. Reports., 44, 759–764. https://doi.org/10.1134/1.1320502
  59. Makarov V.I., Tlatov A.G., Callebaut D.K., Obridko V.N., Shelting B.D. (2001). Large-scale magnetic field and sunspot cycles. Solar Phys, 198(2), 409–421. https://doi.org/10.1023/a:1005249531228
  60. Muñoz-Jaramillo A., Dasi-Espuig M., Balmaceda L.A., DeLuca E.E. (2013). Solar cycle propagation, memory, and prediction: insights from a century of magnetic proxies. Astrophys. J. Lett., 767, L25. https://doi.org/10.1088/2041-8205/767/2/l25
  61. Choudhuri A.R., Chatterjee P., Jiang J. (2007). Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett., 98(13. – id. 131103). https://doi.org/10.1103/physrevlett.98.131103
  62. Cameron R., Schüssler M. (2015). The crucial role of surface magnetic fields for the solar dynamo. Science, 347(6228), 1333–1335. https://doi.org/10.1126/science.1261470
  63. Dikpati M., Gilman P.A. (2006). Simulating and predicting solar cycles using a flux-transport dynamo. Astrophys. J., 649, 498–514. https://doi.org/10.1086/506314
  64. Nandy D., Muñoz-Jaramillo A., Martens P.C.H. (2011). The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations. Nature, 471(7336), 80–82. https://doi.org/10.1038/nature09786
  65. Pipin V.V., Kosovichev A.G. (2013). The mean-field solar dynamo with a double cell meridional circulation pattern. Astrophys. J.. https://doi.org/10.1088/0004-637x/776/1/36
  66. Tlatov A., Illarionov E., Sokoloff D., Pipin V. (2013). A new dynamo pattern revealed by the tilt angle of bipolar sunspot groups. MNRAS, 432(4), 2975–2984. https://doi.org/10.1093/mnras/stt659
  67. Zhao J., Bogart R.S., Kosovichev A.G., Duvall T.L., Jr., Hartlep T. (2013). Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun. Astrophys. J. Lett., 774(2), L29–L34. https://doi.org/10.1088/2041-8205/774/2/l29
  68. Belucz B., Dikpati M., Forgács-Dajka E. (2015). A Babcock-Leighton solar dynamo model with multi-cellular meridional circulation in advection- and diffusion-dominated regimes. Astrophys. J., 806(2). https://doi.org/10.1088/0004-637x/806/2/169
  69. Jiang J., Cameron R.H., Schüssler M. (2015). The case of the weak solar cycle 24. Astrophys. J. Lett.. https://doi.org/10.1088/2041-8205/808/1/l28
  70. Charbonneau P., Barlet G. (2011). The dynamo basis of solar cycle precursor schemes. J. Atmospheric and Solar-Terrestrial Phys., 73(2–3), 198–206. https://doi.org/10.1016/j.jastp.2009.12.020
  71. Kitiashvili I., Kosovichev A.G. (2008). Application of data assimilation method for predicting solar cycles. Astrophys. J., 688, L49–L52. https://doi.org/10.1086/594999
  72. Kitiashvili I., Kosovichev A.G. (2009). Nonlinear dynamical modeling of solar cycles using dynamo formulation with turbulent magnetic helicity. Geophys. Astrophys. Fluid Dynamics., 103(1), 53–68. https://doi.org/10.1080/03091920802396518
  73. http://www.gao.spb.ru/database/csa/groups_r.htm
  74. Moss D., Sokoloff D., Usoskin I., Tutubalin V. (2008). Solar grand minima and random fluctuations in dynamo parameters. Solar Phys, 250(2), 221–234. https://doi.org/10.1007/s11207-008-9202-z
  75. ftp://ftp.ngdc.noaa.gov/stp/solar_data/sunspot_regions
  76. Dikpati M., Gilman P.A., MacGregor K.B. (2006). Penetration of dynamo-generated magnetic fields into the Sun's radiative interior. Astrophys. J., 638(1), 564–575. https://doi.org/10.1086/498682
  77. Dikpati M., De Toma G., Gilman P.A. (2006). Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett, 5110. https://doi.org/10.1029/2005gl025221
  78. Hotta H., Yokoyama T. (2010). Importance of surface turbulent diffusivity in the solar flux-transport dynamo. Astrophys. J., 709(2), 1009–1017. https://doi.org/10.1088/0004-637x/709/2/1009
  79. Krivodubsky V.N. (1982). O turbulentnoy provodimosti i magnitnoy pronitsaemosti solnechnoy plazmy. Soln. dannye., 1982(7), 99–109.
  80. Krivodubskij V.N. (2012). Turbulent effects of sunspot magnetic field reconstruction. Kinematics and Physics of Celestial Bodies, 28(5), 232–238. https://doi.org/10.3103/s0884591312050054
  81. Yeates A.R., Nandy D., Mackay D.H. (2008). Exploring the physical basis of solar cycle predictions: flux transport dynamics and persistence of memory in advection- versus diffusion-dominated solar convection zones. Astrophys. J., 673(1), 544–556. https://doi.org/10.1086/524352
  82. Karak B.B., Nandy D. (2012). Turbulent pumping of magnetic flux reduces solar cycle memory and thus impacts predictability of the Sun's activity. Astrophys. J. Lett., 761(1), L13–L17. https://doi.org/10.1088/2041-8205/761/1/l13
  83. Tobias S.M., Brummell N.H., Clune T.L., Toomre J. (2001). Transport and storage of magnetic field by overshooting turbulent compressible. Astrophys. J., 549(2), 1183–1203. https://doi.org/10.1086/319448
  84. Solanki S.K., Krivova N.A., Schüssler M., Fligge M. (2002). Search for a relationship between solar cycle amplitude and length. Astron. Astrophys., 396, 1029–1035. https://doi.org/10.1051/0004-6361:20021436
  85. Guerrero G., De Gouveia Dal Pino E.M. (2008). Turbulent magnetic pumping in a Babcock–Leighton solar dynamo model. Astron. Astrophys., 485(1), 267–273. https://doi.org/10.1051/0004-6361:200809351

Download PDF