Astronomical School’s Report, 2015, Volume 11, Issue 1, Pages 56–60
UDC 504.064:535.361.2:519.6
Vegetation state estimation based on the fourier analysis of remote sensing data
Semeniv O.V.
Space Research Institute NASU-SSAU, Ukraine
Abstract
An approach to vegetation state estimation based on the Fourier transform of the leaves' reflection spectra, correlation and regression analysis is presented. The interrelation between the coefficients of the spectral density and the total concentration of chlorophyll in the leaves is investigated. The results of numerical modeling and comparative analysis of the experimental data are shown.
Keywords: remote sensing; Fourier transform; correlation analysis; regression analysis; vegetation state
References
- Afifi A., Eyzen S. (1982). Statistichesky analiz: Podkhod s ispol’zovaniem EVM. M.: Mir. 488 p.
- Bendat D., Pirsol A. (1974). Izmerenie i analiz sluchaynykh protsessov. M.: Mir. 463 p.
- Bidiuk P.I., Mytnyk O.Yu. (2004). Zastosuvannia henetychnoho alhorytmu v zadachakh otsiniuvannia vmistu khlorofilu v roslynnosti. Naukovi visti NTUU “KPI”, 2004(4), 65–70.
- Nussbaumer G. (1985). Bystroe preobrazovanie Fur’e i algoritmy vychisleniya svertok. M.: Radio i svyaz’. 249 p.
- Strizhov V.V. (2008). Metody induktivnogo porozhdeniya regressionnykh modeley. M.: Vychislitel’nyy tsentr RAN. 61 p.
- Yatsenko V.O., Kochubey S.M., Khandriga P.A. i dr. (2007). Novyy metod distantsionnogo otsenivaniya soderzhaniya khlorofilla v rastitel’nosti i ego programmno-apparatnaya realizatsiya. Kosmіchna nauka і tekhnologіya, 2007(3(13)), 35–45.
- Yatsenko V.O., Semeniv O.V., Kashpirovs’kyy O.I. (2007). Modeliuvannia spektral’nykh kryvykh ta otsiniuvannia vmistu khlorofilu v roslynnosti. Visnyk Kyyivs’koho universytetu. Ser.: Fizyko-matematychni nauky., 2007(2), 200–203.
- Yatsenko V.O., Semeniv O.V. (2009). Dynamichnyy pidkhid do otsiniuvannia parametriv biokhimichnykh komponent v roslynnosti. Visnyk Kyyivs’koho universytetu. Ser.: Fizyko-matematychni nauky., 2009(1), 163–168.
- Arnon D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 24, 1–15. https://doi.org/10.1104/pp.24.1.1
- Blackburn G.A. (2006). Hyperspectral remote sensing of plant pigments. Journal of Experimental Botany, 58, 855–867. https://doi.org/10.1093/jxb/erl123
- Blackburn G.A. (2007). Wavelet decomposition of hyperspectral data: A novel approach to quantifying pigment concentrations in vegetation. International Journal of Remote Sensing, 28, 2831–2855. https://doi.org/10.1080/01431160600928625
- Davies K.M. (2004). Plant pigments and their manipulation. Annual plant reviews. Vol. 14. – Oxford, UK: Blackwell Publishing, 2004. – 352 p. .
- Duhamel P., Vetterli M. (1990). Fast Fourier Transforms: A Tutorial Review and a State of the Art. Signal Processing, 19, 259–299. https://doi.org/10.1016/0165-1684(90)90158-u
- Feret J.B., François C., Asner G.P., et at. (2008). PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sensing of Environment, 2008(112), 3030–3043. https://doi.org/10.1016/j.rse.2008.02.012
- Frigo M., Johnson S.G. (1998). FFTW: An Adaptive Software Architecture for the FFT. Proceedings of the International Conference on Acoustics, Speech and Signal Processing, 3, 1381–1384. https://doi.org/10.1109/icassp.1998.681704
- Jacquemoud S., Bacour C., Poilve H., Frangi J.P. (2000). Comparison of four radiative transfer models to simulate plant canopies reflectance: Direct and inverse mode. Remote Sensing of Environment, 74, 471–481. https://doi.org/10.1016/s0034-4257(00)00139-5
- Moran J.A., Mitchell A.K., Goodmanson G., Stockburger K.A. (2000). Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance: A comparison of methods. Tree Physiology, 20, 1113–1120. https://doi.org/10.1093/treephys/20.16.1113
- Zarco-Tejada P.J., Berni J.A.J., Suárez L., et al. (2009). Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. Remote Sensing of Environment, 113, 1262–1275. https://doi.org/10.1016/j.rse.2009.02.016
Download PDF