Astronomical School’s Report, 2012, Volume 8, Issue 2, Pages 212–215

https://doi.org/10.18372/2411-6602.08.2212
Download PDF
UDC 528.77

Comparative analysis of supervised methods for the classification of mountain forests based on space imagery from the satellite RapidEye

Shpak A.V.

National Aviation University, Ukraine

Abstract

This article is consider the current methods of supervised forest classification using multispectral RapidEye satellite imagery. The comparative analysis of Mahalanobis distance classification and minimum distance classification was made. Found that method of Mahalanobis distances is more efficient for forest classification.

Keywords: remote sensing; forest classification; supervised classification methods; minimum distance; Mehalanobis distance; RapidEye images; forestry

References

  1. Bahatospektral’ni metody dystantsiynoho zonduvannia Zemli v zadachakh pryrodokorystuvannia / Za red. V.I.Lial’ko ta M.O. Popova (2006). K.: Naukova dumka. 369 p.
  2. Shovengerd R.A. (2010). Distantsionnoe zondirovanie. Modeli i metody obrabotki izobrazheny. M.: Tekhnosfera. 560 p.
  3. Labutina I.A. (2004). Deshifrirovanie aerokosmicheskikh snimkov. Uchebnoe posobie. M.: Aspekt Press. 184 p.
  4. Kashkin V.B. (2001). Distantsionnoe zondirovanie Zemli iz kosmosa. Tsifrovaya obrabotka izobrazheny. Uchebnoe posobie. M.: Logos. 264 p.
  5. Chukhlantsev A.A., Savorsky V.P. (2011). Zadachi DZ lesov pri izuchenii klimaticheskikh izmeneny. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 8(2), 246–256.
  6. Marx A. (2011). Monitoring lesov s pomosch’yu gruppirovki sputnikov RapidEye. Geomatika, 2011(3), 58–66.
  7. Richards J.A. (2006). Remote Sensing Digital Image Analysis. Springer-Verlag, Berlin, Heidelberg. 454 p.

Download PDF