Astronomical School’s Report, 2001, Volume 2, Issue 2, Pages 102–108
UDC 521.528
On the current estimation of some mechanical and geometrical parameters of the Earth
Marchenko A.N.
National University “Lviv Polytechnic”
Abstract
The Earth’s principal axes and principal moments of inertia, was estimated from the least-squares adjustment of gravitational harmonic coefficients of second degree of recent global Earth gravity models including EIGEN-1S solution and the dynamical ellipticity derived from the precession constant through VLBI. The estimation was made for the time-independent components (at epoch) of the Earth’s inertial tensor and the time-dependent components of the tensor of inertia, based on given information on the secular and periodic variations of harmonic coefficients of second degree.
Keywords:
References
- Biancale R., Balmino G., Lemoine J.-M., Marty J.-C., Moynot B., Barlier F., Exertier P., Laurain O., Gegout P., Schwintzer P., Reigber Ch., Bode A., König R., Massmann F.-H., Raimondo J.C., Schmidt R., Zhu S.Y. A New Global Earth's Gravity Field Model from Satellite Orbit Perturbations: GRIM5-S1, Geophysical Research Letters, 2000, 27, P.3611–3614. https://doi.org/10.1029/2000gl011721
- Bretagnon P., Francou G., Rocher P., Simon J.L. SMART97: A new solution for the rotation of the rigid Earth, As.Ap, 1998, 329, P.329–338.
- Dehant V., Capitaine N. On the luni-solar precession, the Tilt-Over-Mode, and the Oppolzer terms, Cel.Mech.Dyn.Astron, 1997, 65, P.439–458. https://doi.org/10.1007/bf00049506
- Marchenko A.N., Schwintzer P. Estimation of the Earth's tensor of inertia from recent global gravity field solutions, Journal of Geodesy (in press), 2002. https://doi.org/10.1007/s00190-002-0280-7
- Melchior P. The tides of the planet Earth, Pergamon, 1978.
- Reigber Ch., Balmino G., Schwintzer P., Biancale R.., Bode A., Lemoine J.-M., Koenig R., Loyer S., Neumayer H., Marty J.-C., Barthelmes F., Perosanz F., Zhu S. Y. A high quality global gravity field model from CHAMP GPS tracking data and Accelerometry, Geophysical Research Letters, accepted May 2002. https://doi.org/10.1029/2002gl015064
- Rochester M.G., Smylie D.E. On changes in the trace of the Earth’s inertial tensor, Journal of Geophysical Research, 1974, 79 (32), P.4948–4951. https://doi.org/10.1029/jb079i032p04948
- Roosbeek F., Dehant V. RDAN97: An analytical development of rigid Earth nutation series using the torque approach, Cel. Mech. and Dyn. Astron, 1998, 70, P.215–253. https://doi.org/10.1023/a:1008350710849
- Souchay J., Kinoshita H. Corrections and new developments in rigid Earth nutation theory: I. Luni-solar influence including indirect planetary effects, As.Ap, 1996, 312, P.1017–1030.
- Tapley B.D., Watkins M.M., Ries J.C., Davis G.W., Eanes R.J., Poole S.R., Rim H.J., Schutz B.E., Shum C.K., Nerem R.S., Lerch F.J., Marshall J.A., Klosko S.M., Pavlis N.K., Williamson R.G. The Joint Gravity Model 3, Journal of Geophysical Research, 1996, 101, B12, P.28029–28049. https://doi.org/10.1029/96jb01645
- Williams J.G. Contributions to the Earth's obliquity rate, precession and nutation, Astron. J, 1994, 108, P.711–724. https://doi.org/10.1086/117108
- Yoder C.F., Williams J.G., Dickey J.O., Schutz B.E., Eanes R.J., and Tapley B.D. Secular variation of earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of earth rotation, Nature, 1983, 303, P.757–762. https://doi.org/10.1038/303757a0
Download PDF