Astronomical School’s Report, 2000, Volume 1, Issue 2, Pages 12–28

https://doi.org/10.18372/2411-6602.01.2012
Download PDF
UDC 521; 528

On the representation of planet’s gravitational and magnetic fields. Planet’s radial density profiles

Marchenko A.N.

State University “Lviv Polytechnic”

Abstract

Basic methods of the representation of planet’s gravitational and magnetic fields were considered for time-independent andtime-dependent potentials. Parameterization of planet’s radial density profile was chosen in Gauss’ way as normal law. Thelatter leads to hydrostatic-adiabatic their models with a good modeling of the global trend of the known piecewise densitydistributions.

Keywords:

References

  1. Bullen, K. E. (1975) The Earth’s Density. Chapman and Hall, London. https://doi.org/10.1007/978-94-009-5700-8
  2. Bursa, M. (1992). Parameters of common relevance of astronomy, geodesy and geodynamics. The Geodesist’s Handbook (ed. C.C.Tscherning), 193-197, Springer International. https://doi.org/10.1007/bf00989271
  3. Cheng, M.K., Eanes, R.J., Shum, C.K., Shutz, B.E., Tapley, B.D. (1989). Temporal variations in low degree zonal harmonic from Starlette orbit analysis. Geophysical Res. Letters, Vol. 16, No 5, 393-396. https://doi.org/10.1029/gl016i005p00393
  4. Darwin, G. (1884) On the figure of equilibrium of a planet of heterogeneous density. Proceeding of the Royal Society, Vol. XXXVI, 158-166. https://doi.org/10.1098/rspl.1883.0090
  5. Dziewonski, A.M. and Anderson, D.L. (1981) Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, Vol. 25, 297-356. https://doi.org/10.1016/0031-9201(81)90046-7
  6. Groten E. (1999) Report of Special Commission 3 on „Fundamental Constants“ (SCFC). Paper presented at the General Assembly of IUGG, (Birmingham, 1999).
  7. Heck, B. (1987). Time dependent geodetic boundary value problems. Proceed. of the International Symposium “Figure and Dynamics of the Earth, Moon and Planets”, Prague, Monogr. Ser. VUGTK, 195-225.
  8. IERS Standards (1989). IERS Technical Note, Central Bureau of IERS, Observatoire de Paris, No 3, 76 p.
  9. Krarup, T. (1969). A Contribution to the Mathematical Foundation of Physical Geodesy. Danish Geod. Inst. Public., No 44, Copenhagen.
  10. Marchenko, A.N. (1998) Parameterization of the Earth’s gravity field. Point and line singularity. Lviv Astronomical and Geodetic Society, Lviv, 1998.
  11. Marchenko, A.N. (1999) Simplest solutions of Clairaut’s equation and the Earth’s density model. In: “Quo vadis geodesia…?” (F.Krumm and V.S. Schwarze, Eds.). Universität Stuttgart, Techn. Reports Depart. of Geodesy and Geoinformatics, Report Nr. 1999. 6-2, 303-311.
  12. Marchenko, A.N. (2000) Solutions of Clairaut’s equation and the piecewise Roche’s density model. Astronomical School’s Report. Uman University, Vol. 1, No 1, 34-43. https://doi.org/10.18372/2411-6602.01.1034
  13. Marchenko, A.N. (2000a) Earth’s radial density based on Gauss’ model. Paper presented at the conference “Modern Achievements of Geodesy”. (April, 2000, Lviv), University of Lviv, 2000, 18-26.
  14. Marchenko A.N., Abrikosov O.A. (1999) Evolution of the Earth’s Principal axes and Moments of Inertia: The Canonical Form of Solution. In: Proceedings of the second International Symposium “Geodynamics of the Alps-Adria Area by means of Terrestrial and Satellite Methods”, Dubrovnik, CROATIA, 1998 (K. Čolič and H. Moritz, Eds.). Zagreb and Graz, 1999, 177 - 202.
  15. Moritz, H. (1980). Advanced Physical Geodesy, Wichmann, Karlsruhe, 1980.
  16. Moritz, H. (1990) The Figure of the Earth. Theoretical Geodesy and Earth’s Interior, Wichmann, Karlsruhe, 1990.
  17. Moritz, H., and Mueller, I.I. (1987). Earth’s Rotation. Theory and Observation. New York, Ungar.
  18. Maxwell, J.K. (1881). A Treatise on Electricity and Magnetism. 2nd Edition, Oxford, Vol.1, 179-214.
  19. Neyman, Yr. (1979). Variational method of Physical Geodesy, Nedra, Moscow, (in Russian)
  20. Rubincam, D.P. (1984). Postglacial rebound observed by LAGEOS and effective viscosity of the lower mantle. J. Geophys. Res., vol.89, 1077-1087. https://doi.org/10.1029/jb089ib02p01077
  21. Sacerdote, F., and Sanso, F. (1987). New developments of boundary value problems in Physical Geodesy. Dipartimento di Mathematica Universita di Pisa, Public. No 208, Pisa.
  22. Yoder, C.F., Williams, J.G., Dickey, J.O., Schutz, B.E., Eanes, R.J., Tapley, B.D. (1983). Secular variation of Earth’s gravitational harmonic J2 coefficient from LAGEOS and nontidal acceleration of Earth rotation. Nature, vol.303, 757–762. https://doi.org/10.1038/303757a0

Download PDF