Astronomical School’s Report, 2020, Volume 16, Issue 1, Pages 16–21
Download PDF
UDC 520:523.34

Telescope pointing software for slit spectroscopy of the lunar exosphere

Velikodsky Yu.I.1, 2, Berezhnoy A.A.3, Velichko S.F.2, 4, Pakhomov Yu.V.5

1National Aviation University, Liubomyra Huzara Ave. 1, 03058 Kyiv, Ukraine
2Institute of Astronomy, V.N. Karazin Kharkiv National University, Sumska St. 35, 61022 Kharkiv, Ukraine
3Sternberg Astronomical Institute, Moscow State University, Universitetskij pr. 13, 119991 Moscow, Russia
4IC AMER Observatory of National Academy of Sciences of Ukraine, Akademika Zabolotnoho St. 27, 03143 Kyiv, Ukraine
5Institute of Astronomy, Russian Academy of Sciences, Pyatnitskaya St. 48, 119017 Moscow, Russia


Detailed description of the original pointing software used for spectral observations of the lunar exosphere is given. The software allows to point the spectrograph of 2-m telescope of Terskol Observatory inside and outside the lunar disk with accuracy of about 2″. Observations of Na lines in the exosphere of the Moon on January 8 and October 7, 2017, do not reveal quick variability of Na lines at time scales of about 20 minutes. On January 8, 2017, the intensity of Na lines above the south pole of the Moon was stronger than that above the north pole of the Moon.

Keywords: telescope pointing; Moon; exosphere; spectroscopy; software


  1. Berezhnoy A.A., Churyumov K.I., Kleshchenok V.V., Kozlova E.A., Mangano V., Pakhomov Yu.V., Ponomarenko V.O., Shevchenko V.V., Velikodsky Yu.I. (2014). Properties of the lunar exosphere during the Perseid 2009 meteor shower. Planetary and Space Science, 96, 90–98.
  2. Canny J. (1986). A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell., 8(6), 679–698.
  3. Flynn B., Mendillo M. (1993). A picture of the Moon's atmosphere. Science, 261(5118), 184–186.
  4. Giorgini J.D. (2015). Status of the JPL Horizons Ephemeris System. IAU General Assembly, 2015. – Meeting #29, id.2256293, .
  5. Killen R.M., Morgan T.H., Potter A.E., Plymate C., Tucker R., Johnson J.D. (2019). Coronagraphic observations of the lunar sodium exosphere January–June, 2017. Icarus, 328, 152–159.
  6. Kuglin C.D., Hines D.C. (1975). The phase correlation image alignment method. Proc. Int. Conference Cybernetics Society, 163–165.
  7. Kuruppuaratchi D.C.P., Mierkiewicz E.J., Oliversen R.J., Sarantos M., Derr N.J., Gallant, M.A., Rosborough S.A., Freer C.W., Spalsbury L.C., Gardner D.D., Lupie O.L. (2018). High-Resolution, Ground-Based Observations of the Lunar Sodium Exosphere During the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission. Journal of Geophysical Research: Planets, 123(9), 2430–2444.
  8. Mierkiewicz E.J., Oliversen R.J., Roesler F.L., Lupie O.L. (2014). High-resolution spectroscopy of the lunar sodium exosphere. Journal of Geophysical Research: Space Physics, 119(6), 4950–4956.
  9. Pence W.D., Chiappetti L., Page C.G., Shaw R.A., Stobie E. (2010). Definition of the flexible image transport system (FITS), version 3.0. Astronomy and Astrophysics, 524, A42.
  10. Potter A.E., Morgan T.H. (1988). Discovery of sodium and potassium vapor in the atmosphere of the Moon. Science, 241(4866), 675–680.
  11. Price-Whelan A.M., Sipőcz B.M., Günther H.M. et al. (2018). The Astropy project: Building an open-science project and status of the v2.0 core package. The Astronomical Journal, 156(3), 123.
  12. Stern S.A., Fitzsimmons A., Killen R.M., Potter A.E. (2000). A direct measurement of sodium temperature in the lunar atmosphere. 31st Lunar and Planetary Science Conference, March 13–17, 2000, Houston, Texas, USA, abstract No. 1122.

Download PDF