Astronomical School’s Report, 2019, Volume 15, Issue 1, Pages 11–18

https://doi.org/10.18372/2411-6602.15.03
Download PDF
UDC 523.98

Correlation of yield of grain crops with changes in the index of solar activity

Vidmachenko A.P.1, 2

1The Main astronomical observatory of the NAS of Ukraine, 03143, Academician Zabolotny str., 27, Kyiv, Ukraine
2National University of Life and Environmental Sciences of Ukraine, 03041, Heroyiv Oborony st., 15, Kyiv, Ukraine

Abstract

The energy of the Sun transformed on the Earth's surface into heat is the main component in the formation of the Earth's climate. Therefore, climate processes significantly depend on changes in the solar activity index (CA). This can be the basis for projections of crop yields. We considered the time series of data on the yield of grain crops as the imposition of a long-term trend, several cyclical components and a random component. The data between points on the time scale for the index of solar activity Sn is consistent with the monthly, and for yield, with annual intervals. The dynamics of changes in yield curves of grain crops has a wave character. The grain yield curves smoothed over a 47-year study period highlighted a general trend. Spectral analysis revealed short waves of changes in grain yield with periods of 2–3 years and with amplitudes for different crops from 0.3–0.5 to 2–2.5 tons/hectare. The values of the harvest depend most of all on the values of the CA indices in the months of sowing grain, going out into the pipe and ripening. The results of the calculations show that high values of the correlation coefficients are achieved by comparing the course of the yield of selected grain crops not with the 11-year, but with the 22-year magnetic cycle of Hale's solar activity. After subtracting it, spectral analysis with a confidence of 90% indicated the existence of quasi-periodic components with a period value of about 2.134±0.062 years. The search for possible periodic processes in the Solar System, which could cause a change in yields with a marked period value, showed that the gravitational interaction of the planets has the same periodicity at opposition of Earth and Mars. Analysis of the data presented in the work shows that the maximum yields were in those years when at distances less than 0.55 AU. the planets were in opposition in spring and summer during the main growing season of the analyzed crops.

Keywords: yield forecast; solar-atmospheric communications; solar activity

References

  1. Vitinsky Yu.I. (1983). Solnechnaya aktivnost’. M.: Nauka. 192 p.
  2. Vitinsky Yu.I., Kopetsky M., Kuklin G.V. Statistika pyatnoobrazovatel’noy deyatel’nosti Solntsa. 1986, S.218–226.
  3. German Dzh.R., Goldberg R.A. (1981). Solntse, pogoda i klimat. L.: Gidrometeoizdat. 320 p.
  4. Golitsyn G.S. (1997). Klimat na protyazhenii chetyrekh milliardov let. Vest. RAN., 67(2), 105–109.
  5. Dymnikov V.P., Volodin E.M., Galin V.Ya. i dr. (2004). Chuvstvitel’nost’ klimaticheskoy sistemy k malym vneshnim vozdeystviyam. Meteorologiya i gidrologiya, 2004(4), 77–91.
  6. Zubov O.R., Zubova L.H., Slavhorods’ka Yu.V. (2012). Otsinka vplyvu meteorolohichnykh faktoriv na vrozhaynist’ ozymykh kul’tur v umovakh pivnichnoyi chastyny Luhans’koyi oblasti. Visnyk Poltavs’koyi derzhavnoyi ahrarnoyi akademiyi, 2012(2), 14–20. https://doi.org/10.31210/visnyk2012.02.02
  7. Izrael’ Yu.A., Sirotenko O.D. (2003). Modelirovanie vliyaniya klimata na produktivnost’ sel’skogo khozyaystva Rossii. Meteorologiya i gidrologiya, 2003(6), 5–17.
  8. Klimenko V.V. (2004). Kholodnyy klimat ranney subatlanticheskoy epokhi v Severnom polusharii. M.: Izd. MEI. 144 p.
  9. Klimenko V.V., Sleptsov A.M. (2003). Kompleksnaya rekonstruktsiya klimata Vostochnoy Evropy za poslednie 2000 let. Izv. RGO., 45–53.
  10. Lykhochvor V.V. (2004). Roslynnytstvo. Tekhnolohiyi vyroshchuvannia sil’s’kohospodars’kykh kul’tur. K.: Tsentr navchal’noyi literatury. 808 p.
  11. Marenych M.M., Varevs’ka O.V. (2011). Otsinka vplyvu ahroklimatychnykh faktoriv na urozhaynist’ i mozhlyvosti prohnozuvannia valovykh zboriv zerna pshenytsi ozymoyi. Visnyk Poltavs’koyi derzhavnoyi ahrarnoyi akademiyi, 2011(4), 18–22.
  12. Mironov A.S. (2011). Solnechnoe teplo i sroki poseva sel’skokhozyaystvennykh kul’tur. Vіsnik Poltavs’koї derzhavnoї agrarnoї akademії, 2011(3), 44–48.
  13. Pisarenko P.V., Khlebnikova Ya.A. (2015). Mnogoletnie izmeneniya urozhaynosti i “volny urozhaynosti” v poltavskom regione. Vestnik Poltavskoy gosudarstvennoy agrarnoy akademii, 2015(3), 32–39.
  14. Puzik L.M., Obraztsova Z.H. (2012). Osoblyvosti formuvannia vrozhaynosti kabachka zalezhno vid klimatychnykh umov. Visnyk Poltavs’koyi derzhavnoyi ahrarnoyi akademiyi, 2012(1), 30–32. https://doi.org/10.31210/visnyk2012.01.07
  15. Sarvari M., Boros B. (2010). Vplyv zminy klimatu na vyroshchuvannia zernovykh kul’tur. Ahroekolohichnyy zhurnal, 2010(2), 53–58.
  16. Svisyuk I.V., Ruseeva Z.M. (1980). Pogoda i urozhay zernovykh kul’tur. Rostov-na-Donu: Rostovskoe knizhnoe izdatel’stvo. 143 p.
  17. Sirotenko O.D., Romanenkov V.A., Gringof I.G. (2006). Otsenki vliyaniya ozhidaemykh izmeneny klimata na sel’skoe khozyaystvo Rossyskoy Federatsii. Meteorologiya i gidrologiya, 2006(8), 92–101.
  18. Yagodinsky V.N. (1987). Aleksandr Leonidovich Chizhevsky. M.: Nauka. 320 p.
  19. Barabash M.B., Korzh T.V., Tatarchuk O.G. (2004). Study of changes and variations of precipitations on the boundary of the XX and XXI centuries under conditions of the global climate warming. Nauk. Pratsi UkrNDGMI – Sci. Works of UKRHMI., 92–102.
  20. Chetyrkin E.M. (1977). Statisticheskie metody prognozirovaniya. M.: Statistika. 200 p.
  21. Eddy J.A. (1976). The Maunder Minimum. Science, 192, No. 4245, 1189–1202. https://doi.org/10.1126/science.192.4245.1189
  22. Fouquart Y., Bonnel B., Ramaswamy V. (1991). Intercomparing shortwave radiation codes for climate studies. J. Geophys. Res., 96, 8955–8968. https://doi.org/10.1029/90jd00290
  23. Kondratyev K.Ya., Krapivin V.F. (2006). Monitoring and prediction of natural disasters. II Nuovo Cimento C, 27. – No. 6, 657.
  24. Loomis R.S., Connor D.J. (2002). Crop Ecology: Productivity and management in agricultural system. Cambridge University Press. 300 p. https://doi.org/10.1017/cbo9780511974199
  25. McCormac B.M., Seliga T.A., Reidel D. (1979). Solar-terrestrial influences on weather and climate. Dordrecht, Holland. 346 p. https://doi.org/10.1007/978-94-009-9428-7
  26. Popytchenko L.M. (2009). The weatherclimatic conditions of the vegetation of winter wheat in the Lugans'k region. In: Collection of Scientific Works of Lugans'k National Agrarian University, Series “Agricultural Sciences”, 121–124.
  27. Shliakhetska Ya.O., Vidmachenko A.P. (2018). Changes in the Activity of the Hemispheres of Jupiter in 2016–2017 Again Became Close to Periodic. 49th Lunar and Planetary Science Conference 19–23 March, 2018, LPICo. 2083, id.1079. .
  28. Varlet-Grancher C., Bonhomme R., Sinoquet H. (1993). Crop structure and light microclimate. 518 p.
  29. Vid'machenko A.P., Morozhenko A.V., Yatskiv Ya.S. (2012). An overview of major factors that define global changes of the Earth climate. Earth Systems Change over Eastern Europe. – K.: Akademperiodyka, 2012., 190–239.
  30. Vidmachenko A.P. (2009). Research of the Mars by space vehicles. Astronomical School's Report, 6, No. 2, 131–137. https://doi.org/10.18372/2411-6602.06.2131
  31. Vidmachenko A.P. (2015). Influence of solar activity on seasonal variations of methane absorption in the atmosphere of Saturn. Kinematics and Physics of Celestial Bodies, 31, No. 3, 131–140. https://doi.org/10.3103/s088459131503006x
  32. Vidmachenko A.P. (2015). Solar activity influence on seasonal changes in Saturn's atmosphere. 446th Lunar and Planetary Science Conference, LPI Co. 1832., 1052.
  33. Vidmachenko A.P. (2016). Influence of Solar Activity on the Brightness Factor of Photometric Activity of Jupiter's Hemispheres. 47th Lunar and Planetary Science Conference, LPI Co. 1903., 1092.
  34. Vidmachenko A.P. (2016). Periodic changes in the activity of Jupiter's hemispheres. 47th Lunar and Planetary Science Conference, LPI Co. 1903., 1091.
  35. Vidmachenko A.P. (2016). Seasonal changes on Jupiter. I. The factor activity of hemispheres. Kinematics and Physics of Celestial Bodies, 32, No. 4, 189–195. https://doi.org/10.3103/s0884591316040073
  36. Vidmachenko A.P. (2016). Seasonal Changes on Jupiter: 2. Influence of the Planet Exposure to the Sun. Kinematics and Physics of Celestial Bodies, 32, No. 6, 283–293. https://doi.org/10.3103/s0884591316060076
  37. Vidmachenko A.P. (2017). Changes in the activity of Jupiter's hemispheres. Kinematics and Physics of Celestial Bodies, 33, No. 6, 291–294. https://doi.org/10.3103/s0884591317060071
  38. Vidmachenko A.P. (2019). About the time of radiation relaxation of the hydrogen-helium atmosphere, determined on the change in the activity factor of Jupiter's hemispheres. Kinematics and Physics of Celestial Bodies, 35, No. 5, 291–298.
  39. Vidmachenko A.P. (2019). Seasonal Variations in the Activity Factor of Jupiter's Hemispheres Restored Their Periodicity. Kinematics and Physics of Celestial Bodies, 35, No. 4, 195–201. https://doi.org/10.3103/s0884591319040068
  40. Vidmachenko A.P. (2019). The forecast of solar activity in the 25th and 26th cycles using Excel 2016. Astronomical School's Report, 15, No. 1, 1–6. https://doi.org/10.18372/2411-6602.15.01
  41. Vidmachenko A.P., Steklov A. F., Minyailo N.F. (1984). Seasonal activity on Jupiter. Soviet Astronomy Letters, 10, 289–290.
  42. http://www.sidc.be/silso/datafiles

Download PDF