Astronomical School’s Report, 2016, Volume 12, Issue 2, Pages 179–184
UDC 551.510; 533.93
Statistical analysis of plasma turbulence using Cluster II data
Kozak L.V., Petrenko B.A.
Kyiv Shevchenko National University, Ukraine
Abstract
The possibility of using different statistical approaches to the description of the turbulent and dynamic processes in the Earth's magnetosphere is represented. Measurements of magnetic field fluctuations during the passage by the mission Cluster-2 satellite from the solar wind to the magnetopause region are analyzed. Applicability of turbulent models to the analysis of different regions of the Earth's magnetosphere and the solar wind plasma is substantiated.
Keywords: plasma; turbulence; statistical functions; magnetosphere
References
- Barenblatt G.I. (2004). Turbulentnye pogranichnye sloi pri ochen’ bol’shikh chislakh Reynol’dsa. Uspekhi matematicheskikh nauk, 45–62. https://doi.org/10.4213/rm700
- Zaslavsky G.M., Sagdeev R.Z. (1988). Vvedenie v nelineynuyu fiziku. Ot mayatnika do turbulentnosti i khaosa. M.: Nauka. 368 p.
- Zelenyy L.M., Veselovsky I.S. (red.) (2008). Kosmicheskaya geogeliofizika. Tom 1. M.: Fizmatlit. 624 p.
- Iroshnikov P.S. (1963). Turbulentnost’ provodyaschey zhidkosti v sil’nom magnitnom pole. Astronomichesky zhurnal, 40, 742–745.
- Kadomtsev B.B. (1988). Kollektivnye yavleniya v plazme. M.: Nauka. 303 p.
- Kadomtsev B.B. (1964). Turbulentnost’ plazmy. Voprosy teorii plazmy / Pod red. M.A. Leontovicha. – M.: Atomizdat, 1964., 188–335.
- Kozak L.V. (2010). Statystychnyy rozghliad turbulentnykh protsesiv u mahnitosferi Zemli za vymiramy suputnyka Interbol. Kosmichna nauka i tekhnolohiya, 16(1), 28–39. https://doi.org/10.15407/knit2010.01.028
- Kolmogorov A.N. (1941). Lokal’naya struktura turbulentnosti v neszhimaemoy vyazkoy zhidkosti pri ochen’ bol’shikh chislakh Reynol’dsa. Doklady AN SSSR, 299–303.
- Novikov E.A., Styuart R.U. (1964). Peremezhaemost’ turbulentnosti i spektr fluktuatsy dissipatsii energii. Izv. AN SSSR, ser. Geofiz., 1964(3), 408–413.
- Savin S.P., Zelenyy L.M., Amata E. i dr. (2004). Dinamicheskoe vzaimodeystvie potoka plazmy s goryachim pogransloem geomagnitnoy lovushki. Pis’ma v ZHETF, 79(8), 452–456.
- Frish U. (1998). Turbulentnost’: Nasledie A.N. Kolmogorova. M.: Fazis. 343 p.
- Benzi R., Ciliberto S., Tripiccione R., et al. (1993). Extended self-similarity in turbulent flows. Phys. Rev. E., 48, R29–R32. https://doi.org/10.1103/physreve.48.r29
- Consolini G., Kretzschmar M., Lui A.T.Y., Zimbardo G., Macek W.M. (2005). On the magnetic field fluctuations during magnetospheric tail current disruption: A statistical approach. J. Geophys. Res.. https://doi.org/10.1029/2004ja010947
- Dubrulle B. (1994). Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. Phys. Rev. Lett.. https://doi.org/10.1103/physrevlett.73.959
- Goldreich P., Sridhar S. (1995). Toward a theory of interstellar turbulence. II. Strong alfvenic turbulence. Astrophys. J., 438, 763–775. https://doi.org/10.1086/175121
- Kraichnan R.H. (1970). Convergents to turbulence functions. J. Fluid Mech., 41, 189–217. https://doi.org/10.1017/s0022112070000587
- Kraichnan R.H. (1965). Lagrangian – history closure approximation for turbulence. Phys. Fluids., 8, 575–598. https://doi.org/10.1063/1.1761271
- Kraichnan R.H. (1959). The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech., 5, 497–543. https://doi.org/10.1017/s0022112059000362
- She Z., Leveque E. (1994). Universal scaling laws in fully developed turbulence. Phys. Rev. Lett.. https://doi.org/10.1103/physrevlett.72.336
- Shevyrev N.N., Zastenker G.N. (2005). Some features of the plasma flow in the magnetosheath behind quasiparallel and quasi-perpendicular bow shocks. Planet. Space Science., 53, 95–102. https://doi.org/10.1016/j.pss.2004.09.033
Download PDF