Astronomical School’s Report, 2016, Volume 12, Issue 2, Pages 179–184

https://doi.org/10.18372/2411-6602.12.2179
Download PDF
UDC 551.510; 533.93

Statistical analysis of plasma turbulence using Cluster II data

Kozak L.V., Petrenko B.A.

Kyiv Shevchenko National University, Ukraine

Abstract

The possibility of using different statistical approaches to the description of the turbulent and dynamic processes in the Earth's magnetosphere is represented. Measurements of magnetic field fluctuations during the passage by the mission Cluster-2 satellite from the solar wind to the magnetopause region are analyzed. Applicability of turbulent models to the analysis of different regions of the Earth's magnetosphere and the solar wind plasma is substantiated.

Keywords: plasma; turbulence; statistical functions; magnetosphere

References

  1. Barenblatt G.I. (2004). Turbulentnye pogranichnye sloi pri ochen’ bol’shikh chislakh Reynol’dsa. Uspekhi matematicheskikh nauk, 45–62. https://doi.org/10.4213/rm700
  2. Zaslavsky G.M., Sagdeev R.Z. (1988). Vvedenie v nelineynuyu fiziku. Ot mayatnika do turbulentnosti i khaosa. M.: Nauka. 368 p.
  3. Zelenyy L.M., Veselovsky I.S. (red.) (2008). Kosmicheskaya geogeliofizika. Tom 1. M.: Fizmatlit. 624 p.
  4. Iroshnikov P.S. (1963). Turbulentnost’ provodyaschey zhidkosti v sil’nom magnitnom pole. Astronomichesky zhurnal, 40, 742–745.
  5. Kadomtsev B.B. (1988). Kollektivnye yavleniya v plazme. M.: Nauka. 303 p.
  6. Kadomtsev B.B. (1964). Turbulentnost’ plazmy. Voprosy teorii plazmy / Pod red. M.A. Leontovicha. – M.: Atomizdat, 1964., 188–335.
  7. Kozak L.V. (2010). Statystychnyy rozghliad turbulentnykh protsesiv u mahnitosferi Zemli za vymiramy suputnyka Interbol. Kosmichna nauka i tekhnolohiya, 16(1), 28–39. https://doi.org/10.15407/knit2010.01.028
  8. Kolmogorov A.N. (1941). Lokal’naya struktura turbulentnosti v neszhimaemoy vyazkoy zhidkosti pri ochen’ bol’shikh chislakh Reynol’dsa. Doklady AN SSSR, 299–303.
  9. Novikov E.A., Styuart R.U. (1964). Peremezhaemost’ turbulentnosti i spektr fluktuatsy dissipatsii energii. Izv. AN SSSR, ser. Geofiz., 1964(3), 408–413.
  10. Savin S.P., Zelenyy L.M., Amata E. i dr. (2004). Dinamicheskoe vzaimodeystvie potoka plazmy s goryachim pogransloem geomagnitnoy lovushki. Pis’ma v ZHETF, 79(8), 452–456.
  11. Frish U. (1998). Turbulentnost’: Nasledie A.N. Kolmogorova. M.: Fazis. 343 p.
  12. Benzi R., Ciliberto S., Tripiccione R., et al. (1993). Extended self-similarity in turbulent flows. Phys. Rev. E., 48, R29–R32. https://doi.org/10.1103/physreve.48.r29
  13. Consolini G., Kretzschmar M., Lui A.T.Y., Zimbardo G., Macek W.M. (2005). On the magnetic field fluctuations during magnetospheric tail current disruption: A statistical approach. J. Geophys. Res.. https://doi.org/10.1029/2004ja010947
  14. Dubrulle B. (1994). Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. Phys. Rev. Lett.. https://doi.org/10.1103/physrevlett.73.959
  15. Goldreich P., Sridhar S. (1995). Toward a theory of interstellar turbulence. II. Strong alfvenic turbulence. Astrophys. J., 438, 763–775. https://doi.org/10.1086/175121
  16. Kraichnan R.H. (1970). Convergents to turbulence functions. J. Fluid Mech., 41, 189–217. https://doi.org/10.1017/s0022112070000587
  17. Kraichnan R.H. (1965). Lagrangian – history closure approximation for turbulence. Phys. Fluids., 8, 575–598. https://doi.org/10.1063/1.1761271
  18. Kraichnan R.H. (1959). The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech., 5, 497–543. https://doi.org/10.1017/s0022112059000362
  19. She Z., Leveque E. (1994). Universal scaling laws in fully developed turbulence. Phys. Rev. Lett.. https://doi.org/10.1103/physrevlett.72.336
  20. Shevyrev N.N., Zastenker G.N. (2005). Some features of the plasma flow in the magnetosheath behind quasiparallel and quasi-perpendicular bow shocks. Planet. Space Science., 53, 95–102. https://doi.org/10.1016/j.pss.2004.09.033

Download PDF