Astronomical School’s Report, 2016, Volume 12, Issue 1, Pages 7–13

https://doi.org/10.18372/2411-6602.12.1007
Download PDF
UDC 523.68+520.373

Anomalous photometrical displays in faint meteors from TV observations in Kyiv

Kozak P.M.

Astronomical Observatory, Kyiv Shevchenko National University, Ukraine

Abstract

Analysis of a large range of results of modern TV meteor observations for searching presence their of the meteors with highly displayed anomalies in kinematic and photometrical characteristics has been carried out. In parallel, the results of Kyiv meteor group observations obtained with the help of observational systems equipped by high sensitive transmitting TV tubes of superisocon type, which have a range of highly displayed anomalies in a meteor development are presented. Comparative qualitative analysis of the observational data containing anomalous displays in meteor photometrical parameters, in part in their light curves is carried out, and the conclusions about physical reality of technical artifacts of the selected anomalies are done.

Keywords: anomalous meteors; meteor photometry; meteor TV observations

References

  1. Bronshten V.A. (1981). Fizika meteornykh yavleny. M.: Nauka. 416 p.
  2. Kozak P.M., Rozhylo O.O., Taranukha Yu.H., Kruchynenko V.H. (2011). Kinematychni kharakterystyky veresnevykh meteoriv za bazysnymy televiziynymy sposterezhenniamy 2003 roku. Kosmichna nauka i tekhnolohiya, 17(4), 51–62. https://doi.org/10.15407/knit2011.04.053
  3. Kozak P.M., Rozhylo O.O., Taranukha Yu.H. (2012). Kinematychni parametry meteoriv za rezul’tatamy bazysnykh televiziynykh sposterezhen’ v period osinn’oho rivnodennia 2001 roku. Visnyk Kyyivs’koho natsional’noho universytetu imeni Tarasa Shevchenka. Astronomiya. – Vyp. 49., 19–24.
  4. Levin B.Yu. (1956). Fizicheskaya teoriya meteorov i meteornoe veschestvo v Solnechnoy sisteme. Izd. AN SSSR. 294 p.
  5. Baggaley W.J., Bennet R.G.T., Steel D.I., Taylor A.D. (1994). The advanced meteor orbit radar facility: AMOR. Q.J.R. astron. Soc., 35, 293–320.
  6. Baggaley W.J., Marsh S.H., Close S. (2007). Interstellar meteors. Proc. “Dust in Planetary Systems”, Kauai, Hawaii, USA, 2005. – ESA SP-643. – LPI Contribution., 23.
  7. Betlem H., Jenniskens P., Leven J., Kuile C., Johannink C., Zhao H., Lei C., Li G., Zhu J., Evans S., Spurny P. (1999). Very precise orbits of 1998 Leonid meteors. Meteoritics and Planetary Science, 34, 979–986.
  8. Brown P., Jones J., Weryk R.J., Campbell-Brown M.D. (2004). The Velocity Distribution of Meteoroids at the Earth as Measured by the Canadian Meteor Orbit Radar (CMOR). Earth, Moon and Planets, 617–626. https://doi.org/10.1007/1-4020-5075-5_57
  9. Ceplecha Z., et al. (1998). Meteor phenomena and bodies. Space Sci. Rev., 84, 327–471.
  10. Fujiwara Y., Ueda M., Shiba Y., Sugimoto M., Kinoshita M., Shimods C., Nakamura T. (1998). Meteor luminosity at 160 km altitude from TV observations for bright Leonid meteors. Geophys. Res. Letters., 285–288. https://doi.org/10.1029/97gl03766
  11. Hajdukova M., Kruchinenko V.G., Kazantsev A.M., Taranucha Ju.G., Rozhilo A.A., Eryomin S.S., Kozak P.N. (1995). Perseid meteor stream 1991–1993 from TV observations in Kiev. Earth, Moon and Planets, 68, 297–301. https://doi.org/10.1007/bf00671520
  12. Horii S., Watanabe J., Sato M. (2008). Meteor showers originated from 73P/Schwassmann–Wachmann. Earth, Moon, and Planets, 102, 85–89. https://doi.org/10.1007/s11038-007-9224-9
  13. Jenniskens P. (2012). The parent bodies of our meteor showers. Abst. Book Int. Conf. “Asteroids, Comets, Meteors”., 8188–8178.
  14. Jopek T.J. Meteor Data Center of International Astronomical Union. 2009, http://www.astro.amu.edu.pl/ jopek/MDC2007.
  15. Kashcheyev B.L., Kolomoyets S.V. (2001). Interstellar particle detection and selection criteria of meteor streams. Ed.: Barbara Warmbein. – ESA SP-495. – Noordwijk: ESA Publications Division., 743–650.
  16. Koten P., Spurny P., Borovicka J, Stork R. (2001). Extreme beginning heights for non-Leonid meteors. Ed.: Barbara Warmbein. – ESA SP-495. – Noordwijk: ESA Publications Division., 119–122.
  17. Kozak P., Rozhilo O., Kruchynenko V., Kazantsev A., Taranukha A. (2007). Results of processing of Leonids-2002 meteor storm TV observations in Kyiv. Adv. Space Res., 619–623. https://doi.org/10.1016/j.asr.2005.08.014
  18. Kozak P. (2008). “Falling Star”: Software for processing of double-dtation TV meteor observations. Earth, Moon, and Planets, 277–283. https://doi.org/10.1007/s11038-007-9223-x
  19. Kruchinenko V.G, Kazantsev A.M., Taranukha Yu.G., Kozak P.M., Yeryomin S.S., Rozhylo O.O., Smertyuk L.M. (1997). Catalogue of Perseid shower meteors on TV observations in Kyiv during 1991–1993. Bull. Kiev Univ., Astronomy., 34, 94–117.
  20. LeBlanc A.G., Murray I.S., Hawkes R.L., Worden P., Campbell M.D., Brown P., Jenniskens P., Correll R.R., Montague T., Babcock D.D. (2000). Evidence for transverse spread in Leonid meteors. Mon. Not. R. Astron. Soc., 313, L9–L13. https://doi.org/10.1046/j.1365-8711.2000.03347.x
  21. Lindblad B.A. (1998). A survey of meteoroid orbits obtained by two-station video observations. Proc. Int. Conf. Meteoroids 1998 (Eds. W.J. Baggaley, V. Porubcan), Tatranska Lomnica, Slovakia, 1999., 274–281.
  22. Lindblad B.A. (2001). The IAU meteor data center. Proc. Int. Conf. Meteoroids 2001 (Ed. B.Warmbein), Kiruna, Sweden, 2001., 71–72.
  23. Lindblad B.A., Neslusan L., Svoren J., Porubcan V. (2001). The updated version of the IAU MDC database of photographic meteor orbits. Proc. Int. Conf. Meteoroids 2001 (Ed. B.Warmbein), Kiruna, Sweden, 2001., 73–75.
  24. Opik E.J. (1958). Physics of Meteor Flight in the Atmosphere. New York: Interscience Publ.. 174 p.
  25. Roberts I.D., Hawkes R.L., Weryk R.J., Campbell-Brown M.D., Prown P.G., Stokan E., Subasighe D. (2013). Meteoroid structure and ablation implication from multiple maxima meteor light curves. Meteoroids 2013 Proc., Poznan, Poland. – Eds.: Jopek T.J., Rietmeijer F.J.M., Watanabe J., Williams I.P. – A. Mickiewicz Univ. Press in Poznan, 2014., 155–162.
  26. Spurny P., Betlem H., Leven J.V., Jenniskens P. (2000). Atmospheric behavior and extreme beginning heights of the thirteen brightest photographic Leonid meteors from the ground based expedition to China. Meteoritics and Planetary Science, 35, 243–249. https://doi.org/10.1111/j.1945-5100.2000.tb01773.x
  27. Spurny P., Betlem H., Jobse K., Koten P., Leven J.V. (2000). New type of radiation of bright Leonid meteors above 130 km. Meteoritics and Planetary Science, 35, 1109–1115. https://doi.org/10.1111/j.1945-5100.2000.tb01497.x
  28. Stenbaek-Nielsen H.C., Jenniskens P. (2004). A “shocking” Leonid meteor at 1000 fps. Adv. Space Res., 33, 1459–1465. https://doi.org/10.1016/j.asr.2003.06.003
  29. Stokan E., Campbell-Brown M.D. (2014). Transverse motion of fragmenting faint meteors observed with the Canadian Automated Meteor Observatory. Icarus, 232, 1–12. https://doi.org/10.1016/j.icarus.2014.01.002
  30. Svoren J., Porubcan V., Neslusan L. (2008). Current status of the photographic meteoroid orbits database and a call for contributions to a new version. Earth, Moon, and Planets, 11–14. https://doi.org/10.1007/978-0-387-78419-9_3
  31. Taylor A.D., Baggaley W. J., Steel D.I. (1996). Discovery of interstellar dust entering the Earth's atmosphere. Nature.– 1996. – 380, 6572., 323–325. https://doi.org/10.1038/380323a0
  32. Taylor M.J., Gardner R.C., Murray I.S., Jenniskens P. (2000). Jet-like structures and wake in Mg I (518 nm) images of 1999 Leonid storm meteors. Earth, Moon, and Planets.– 2000. – 82–83., 379–389. https://doi.org/10.1007/978-94-017-2071-7_28
  33. Watanabe J., Tabe I., Hasegawa H., Hashimoto T., Fuse T., Yoshikawa M., Abe S., Suzuki B. (2003). Meteoroid clusters in Leonids: evidence of fragmentation in space. Publ. Astron. Soc. in Japan., L23–L26. https://doi.org/10.1093/pasj/55.3.l23
  34. Watanabe J. (2004). Meteor streams and comets. Earth, Moon, and Planets, 95, 49–61. https://doi.org/10.1007/s11038-005-9045-7
  35. Watanabe J., Sato M. (2008). Activities of parent comets and related meteor showers. Earth, Moon, and Planets.– 2008. – 102., 111–116. https://doi.org/10.1007/s11038-007-9193-z
  36. Whipple F.L. (1950). The theory of micro-meteorites. Part I. In an isothermal atmosphere. Proc. Nat. Acad. Sci. Amer., 36(12), 686–695. https://doi.org/10.1073/pnas.36.12.687
  37. Whipple F.L. (1951). The theory of micro-meteorites. Part II. In heterothermal atmospheres. Proc. Nat. Acad. Sci. Amer., 37(1), 19–29. https://doi.org/10.1073/pnas.37.1.19

Download PDF