Astronomical School’s Report, 2015, Volume 11, Issue 1, Pages 91–98

https://doi.org/10.18372/2411-6602.11.1091
Download PDF
UDC 528.855+835

Detection of winter crops by satellite data on the basis of soil-adaptive perpendicular vegetation index

Pidgorodetska L.V., Zyelyk Ya.I.

Space Research Institute NASU-SSAU, Ukraine

Abstract

The developed and implemented technique of winter crops detection on the basis of automatic classification of satellite raster imagery of the agricultural land in the perpendicular vegetation index PVI values according spectroradiometer MODIS MOD09 product and using ground reference data on crop rotation on the farm territory is considered. In the software environment ERDAS IMAGINE the PVI index calculation model is implemented, based on the equation of soil line, and built the raster image of the territory in the PVI index values is built. A high percentage of coincidence locations and of winter crops land areas (not less than 70%) classified by the developed technique with ground data on crop rotations on the farm territory demonstrates the possibility of techniques applying for effective operative detection of winter crops based on satellite data during the autumn-winter period on the regional level.

Keywords: winter crops; raster image; automatic classification; perpendicular vegetation index PVI; MODIS MOD09 data product; surface reflectance

References

  1. Bartalyov S.A., Egorov V.A., Lupyan E.A., Plotnikov D.E., Uvarov I.A. (2011). Raspoznavanie pakhotnykh zemel’ na osnove mnogoletnikh sputnikovykh dannykh spektroradiometra MODIS i lokal’no-adaptivnoy klassifikatsii. Komp’yuternaya optika, 35(1), 103–116.
  2. Plotnikov D.E, Bartalyov S.A., Lupyan E.A. (2010). Priznaki raspoznavaniya pakhotnykh zemel’ na osnove mnogoletnikh ryadov dannykh sputnikovogo spektroradiometra MODIS. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa: Fizicheskie osnovy, metody i tekhnologii monitoringa okruzhayuschey sredy, potentsial’no opasnykh yavleny i ob’ektov: Cb. nauch. statey. – M: OOO “DoMira”, 2010. – 7, № 1., 330–341.
  3. Plotnikov D.E, Bartalyov S.A., Uvarov I.A. Metod vyyavleniya ozimykh kul’tur po dannym MODIS na osnove iterativnogo algoritma lokal’no-adaptivnoy klassifikatsii s obucheniem. M.: IKI RAN, 2009, http://d33.infospace.ru/d33_conf/2009_conf_pdf/rastit/Plotnikov_Bartalev_Uvarov.pdf
  4. Ukrainsky P.A., Zemlyakova A.V. (2014). Opredelenie parametrov pochvennoy linii dlya avtomatizirovannogo raspoznavaniya otkrytoy poverkhnosti pochvy na kosmicheskikh snimkakh. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovany, 2014(9), 140–144.
  5. Richardson A.J., Wiegand C.L. (1977). Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens., 43, 1541–1552.
  6. Kokhan S.S., Vostokov A.B. (2009). Dystantsiyne zonduvannia Zemli: Teoretychni osnovy. K.: Vyshcha shkola. 511 p.
  7. Chandra A.M., Gosh S.K. (2008). Distantsionnoe zondirovanie i geograficheskie informatsionnye sistemy. M: Tekhnosfera. 312 p.
  8. Kauth R.J., Thomas G.S. The Tasselled Cap A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT (1976). LARS Symposia. Paper 159, P.4B41–4B51
  9. Vegetatsionnye indeksy. http://gis-lab.info/qa/vi.html
  10. Cherepanov A.S. (2011). Vegetatsionnye indeksy. Geomatika, 2011(2), 98–102.
  11. Shovengerdt R.A. (2010). Distantsionnoe zondirovanie. Modeli i metody obrabotki izobrazheny. M.: Tekhnosfera. 560 p.
  12. Kaufman Y.J., Remer L.A. (1994). Detection of forests using mid-IR reflectance: an application for aerosol studies. IEEE Transactions on Geoscience and Remote Sensing, 32, 672–683. https://doi.org/10.1109/36.297984
  13. LP DAAC. Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table).
  14. ERDAS Field Guide, Technical Documentation ERDAS INC. – Norcross, GA (2009). 824 p.
  15. Tu Dzh., Gonsales R. (1978). Printsipy raspoznavaniya obrazov. M.: Mir. 412 p.

Download PDF