Astronomical School’s Report, 2015, Volume 11, Issue 1, Pages 34–47

https://doi.org/10.18372/2411-6602.11.1034
Download PDF
UDC 523.98

Double maxima of 11-year solar cycles

Krivodubskij V.N.

Astronomical Observatory, Kyiv Shevchenko National University, Ukraine

Abstract

The explanation of the observed phenomenon of double peaks of the 11 year sunspot cycles is proposed. The scenario involves five processes of reconstruction of magnetism in the solar convective zone (SCZ): ω effect, magnetic buoyancy, macroscopic turbulent diamagnetism, rotary ∇ρ effect and meridional circulation. It was established that the reconstruction of magnetism in high-latitude and equatorial domains of the SCZ occurs in different modes. Two time-shifted waves of the toroidal field to the solar surface play a key role in the proposed mechanism in the equatorial domain.

Keywords: solar activity; sunspots; 11-year cycles; magnetic fields; turbulence; dynamo model of the solar cycle; turbulent reconstruction of magnetism

References

  1. Horrebow P. Elementa Mathesos I. Copenhagen. 1792.
  2. Waldmeier M. (1938). Zs. Astrophys., 16, 439–450.
  3. Hale G.E. (1908). On the probable existence of a magnetic field in sun-spots. Astrophys. J., 28, 315–343. https://doi.org/10.1086/141602
  4. Carrington R.C. (1863). Observations of the spots of the Sun. London. 264 p.
  5. Spörer G. (1874). Publ. Astron. Gesellschaf., 13, 151; Publ. Potsdam Obs. – 1880. – № 1; Publ. Potsdam Obs. – 1894. – № 32.
  6. Maunder E.W. (1913). Sun, Place of the, Distribution of sun-spots in heliographic latitude, 1874–1913. MNRAS, 73, 112–116. https://doi.org/10.1093/mnras/74.2.112
  7. Wolf R. Handbuch der Astronomie, 2, Shulthiss. Zurich, 1892.
  8. Waldmaier M. (1935). Astron. Mitt. Zurich., 1935(133).
  9. Gnevyshev M.N., Ol’ A.I. (1948). O 22-letnem tsikle solnechnoy aktivnosti. Astron. zhurn., 25(1), 18–20.
  10. Babckok H.W. (1961). The topology of the Sun's magnetic field and the 22 year cycle. Astrophys. J., 133, 572–1033.
  11. Obridko V.N. (1985). Solnechnye pyatna i kompleksy aktivnosti. M.: Nauka. 256 p.
  12. Obridko V.N. (2008). Magnitnye polya i indeksy aktivnosti. V kn.: Plazmennaya geliogeofizika. V 2 t. T.І / Pod red. L.M. Zelenogo, I.S. Veselovskogo. – M.: Fizmatlit, 2008., 41–60.
  13. Vaynshteyn S.I., Zel’dovich Ya.B., Ruzmaykin A.A. (1980). Turbulentnoe dinamo v astrofizike. M.: Nauka. 352 p.
  14. Zeldovich Ya.B., Ruzmaikin A.A., Sokoloff D.D. Magnetic Fields in Astrophysics. New York: Gordon and Breach, 1983.
  15. Charbonneau P. (2010). Dynamo models of the solar cycle. Living Rev. Solar Phys., 7(3), 1–91. https://doi.org/10.12942/lrsp-2010-3
  16. Hale G.E., Nicholson S.B. (1938). Magnetic observations of sunspots, 1917–1924. Publ. Carnegie Wash. Inst., 1938(498).
  17. Wolf R. Kortweg Sitzungensberichne. Wien, 1883.
  18. Ladikov-Roev Yu.P., Cheremnykh O.K. (2010). Matematicheskie modeli sploshnykh sred. Kiev: Naukova dumka. 552 p.
  19. Zagorodny A.G., Cheremnykh O.K. (2014). Vvedenie v fiziku plazmy. Kiev: Naukova dumka. 696 p.
  20. Kozak L.V., Kostyk R.I., Cheremnykh O.K. (2013). Dva rezhima turbulentnosti na Solntse. Kinematika i fizika nebes. tel., 29(2), 22–29.
  21. Kolmogorov A.N. (1941). Lokal’naya struktura turbulentnosti v neszhimaemoy vyazkoy zhidkosti pri ochen’ bol’shikh chislakh Reynol’dsa. Dokl. AN SSSR., 30(4), 299–303.
  22. Kraichnan R.H. (1965). Internal-ranger spectrum of hydromagnetic turbulence. Phys. Fluids., 8, 1385–1387. https://doi.org/10.1063/1.1761412
  23. Krause F., Rädler K.-H. (1980). Mean Field Magnetohydrodynamics and Dynamo Theory. Oxford: Pergamon Press, Ltd.. 271 p.
  24. Krivodubskij V.N. (2015). Small scale alpha-squared effect in the solar convection zone. Kinematics and Physics of Celestial Bodies, 31(2), 55–64. https://doi.org/10.3103/s0884591315020038
  25. Krivodubskij V.N. (2012). Turbulent effects of sunspot magnetic field reconstruction. Kinematics and Physics of Celestial Bodies, 28(5), 232–238. https://doi.org/10.3103/s0884591312050054
  26. Krivodubskij V.N. (2005). Turbulent dynamo near tachocline and reconstruction of azimuthal magnetic field in the solar convection zone. Astron. Nachrichten., 326(1), 61–74. https://doi.org/10.1002/asna.200310340
  27. Stix M. (1981). Theory of the solar cycle. Solar Phys, 74, 79–101. https://doi.org/10.1007/bf00151277
  28. Krivodubsky V.N. (1984). Intensivnost’ istochnikov magnitnykh poley solnechnogo αω-dinamo. Astron. zhurnal., 61(3), 540–548.
  29. Krivodubskij V.N. (1998). Rotational anisotropy and magnetic quenching of gyrotropic turbulence in the solar convective zone. Astronomy Reports, 42(1), 122–126.
  30. Rudiger G., Arlt R. (2002). Physics of solar cycle. In: Advances in nonlinear dynamos / The Fluid Mechanics of Astrophysics and Geophysics, 9, 147–191. https://doi.org/10.1201/9780203493137.ch6
  31. Ossendrijver M. (2003). The solar dynamo. Astron. Astrophys. Rev., 11(4), 287–367.
  32. Krivodubskij V.N. (2013). On the extended 23rd solar cycle. Proceed. IAU Symp. – 294., 69–70. https://doi.org/10.1017/s174392131300224x
  33. Krivodubskij V.N., Lozitska N.I. (2013). Dependence of solar cycles duration on the magnitude of the annual module of the sunspots magnetic field. Proceed. IAU Symp. – 294., 71–72. https://doi.org/10.1017/s1743921313002251
  34. Vitinsky Yu.I., Kopetsky M., Kuklin G.V. (1986). Statistika pyatnoobrazovatel’noy deyatel’nosti Solntsa. M.: Nauka. 296 p.
  35. Gnevyshev M.N. (1963). The corona and the 11-year cycle of solar activity. Soviet Astronomy, 7(3), 311–318.
  36. Antalova A., Gnevyshev M.N. (1965). Principal characteristics of the 11-year solar activity cycle. Soviet Astronomy, 9, 198–201.
  37. Gnevyshev M.N. (1967). On the 11 years cycle of solar activity. Solar Phys, 1, 107–120. https://doi.org/10.1007/bf00150306
  38. Gnevyshev M.N. (1977). Essential features of the 11-year solar cycle. Solar Phys, 51, 175–183. https://doi.org/10.1007/bf00240455
  39. Kopecky M., Kuklin G.V. (1969). A few notes on the sunspot activity in dependence on the phase of the 11-year cycle and on the heliographic latitude. Bull. Astron. Inst. Czech., 20, 22–29.
  40. Ishkov V.N. (n.d.). The current 23 solar cycle: its evolution and principal features. Abstracts of the conference “Astronomy and space physics at Kyiv University”, Kyiv, Ukraine, May 22–26, 2005, 63–64.
  41. Schatten K.H., Scherrer P.H., Svalgaard L., Wilcox J.M. (1978). Using dynamo theory to predict the sunspot number during cycle 21. Geophys. Res. Lett., 5, 411–414. https://doi.org/10.1029/gl005i005p00411
  42. Tassoul J.-L. Theory of Rotating Stars. Princeton: University Press, 1978.
  43. Komm R.W., Howard R.F., Harvey J.W. (1993). Meridional flow of small photospheric magnetic features. Solar Phys, 147, 207–223. https://doi.org/10.1007/bf00690713
  44. Snodgrass H.B., Dailey S.B. (1996). Meridional motions of magnetic features in the solar photosphere. Solar Phys, 163, 21–42. https://doi.org/10.1007/bf00165454
  45. Nesme Ribes E., Meunier N., Vince I. (1997). Solar dynamics over cycle 19 using sunspots as tracers. Astron. Astrophys., 321, 323–329.
  46. Hathaway D.H. (1996). Doppler measurements of the Sun's meridional flow. Astrophys. Journ., 460, 1027–1033. https://doi.org/10.1086/177029
  47. Georgieva K. (2011). Why the sunspot cycle is doubly peaked. ISRN Astronomy and Astrophysics. https://doi.org/10.5402/2011/437838
  48. Georgieva K., Kirov B. (2011). Solar dynamo and geomagnetic activity. Journ. Atmospheric and Solar Terrestrial Physics., 73(2–3), 207–222. https://doi.org/10.1016/j.jastp.2010.03.003
  49. Giles P.M., Duval T.L.Jr., Scherrer P.H., Bogart R.S. (1997). A subphotospheric flow of material from the Sun's equator to its poles. Nature (London), 390, 52–54. https://doi.org/10.1038/36294
  50. Braun D.C., Birc A.C. (2008). Prospects for the detection of the deep solar meridional circulation. Astrophys. J. Lett., 689, L161-L165. https://doi.org/10.1086/595884
  51. Zhao J., Kosovichev A.G. (2004). Torsional oscillation, meridional flows, and vorticity inferred in the upper convection of the Sun by time-distance helioseismology. Astrophys. J., 603, 776–784. https://doi.org/10.1086/381489
  52. Kosovichev A.G. (2008). Probing solar and stellar interior dynamics and dynamo. Advances in Space Research, 41, 830–837. https://doi.org/10.1016/j.asr.2007.05.023
  53. Van Ballegooijen A.A., Choudhuri A.R. (1988). The possible role of meridional circulation in suppressing magnetic buoyancy. Astrophys. J., 333, 965–977. https://doi.org/10.1086/166805
  54. Nandy D., Choudhuri A.R. (2002). Explaining the latitudinal distribution of sunspots with deep meridional flow. Science, 296, 1671–1674. https://doi.org/10.1126/science.1070955
  55. Jiang J., Chatterjee P., Choudhuri A. (2007). Solar activity forecast with a dynamo. MNRAS, 381(4), 1527–1542. https://doi.org/10.1111/j.1365-2966.2007.12267.x
  56. Fisher G.Y., Fan J., Longcope D.W., Linton M.G., Abbett W.P. (2000). Magnetic flux tubes inside the Sun. Physics of Plasma, 7(5), 2173–2179. https://doi.org/10.1063/1.874050
  57. Hathaway D.H., Nandy D., Wilson R.M., Reichmann E.J. (2003). Evidence that a deep meridional flow sets the sunspot cycle. Astrophys. J., 589, 665–670. https://doi.org/10.1086/374393
  58. Parker E.N. (1955). The formation of sunspots from the solar toroidal field. Astrophys. J., 121, 491–507. https://doi.org/10.1086/146010
  59. Zel’dovich Ya.B. (1956). Magnitnoe pole pri dvumernom dvizhenii provodyaschey zhidkosti. ZHETF, 31, 154–156.
  60. Rädler K.-H. (1968). Zur Elektrodynamik turbulent bewegterm leitender Mediem. Zeits. Naturforsch. I..
  61. Stix M. (2002). The Sun: an introduction, second edition. Berlin: Springer-Verlag. 490 p.
  62. Kitchatinov L.L., Rudiger G. (1992). Magnetic field advection in inhomogeneous turbulence. Astron. Astrophys., 260, 494–498.
  63. Drobyshevskij E.M. (1977). Magnetic field transfer by two-dimensional convection and solar “semi-dynamo”. Astrophys. Space Sci., 46, 41–49. https://doi.org/10.1007/bf00643752
  64. Vaynshteyn S.I. (1983). Magnitnye polya v kosmose. M.: Nauka. 240 p.
  65. Kichatinov L.L. (1982). O magnitnoy gidrodinamike srednikh poley v neodnorodnoy turbulentnoy srede. Magnit. gidrodinamika., 1982(3), 67–73.
  66. Kitchatinov L.L. (1991). Turbulent transport of magnetic fields in a highly conducting rotating fluid and the solar cycle. Astron. Astrophys., 243(2), 483–491.
  67. Christensen-Dalsgaard J. (2002). Helioseismology. Rev. Mod. Phys., 74, 1073–1129. https://doi.org/10.1103/revmodphys.74.1073
  68. Howe R., Christensen-Dalsgaard J., Hill F., Komm R., Larsen R. M., Schou J., Thompson M., Toomre J. (2000). Dynamic variations at the base of the solar convection zone. Science, 287, 2456–2460. https://doi.org/10.1126/science.287.5462.2456
  69. Schou J., Antia H.M., Basu S., et al. (1998). Helioseismic studies of differential rotation in the solar envelope by the Solar Oscillations Investigation using the Michelson Doppler Imager. Astrophys. J., 505, 390–417. https://doi.org/10.1086/306146
  70. Solov’ev A.A., Kirichek E.A. (2004). Diffuznaya teoriya solnechnogo magnitnogo tsikla. Elista–SPb.: Izd-vo Kalmytskogo GU. 182 p.
  71. Popova E., Zharkova V., Zharkov S. (2013). Probing latitudinal variations of the solar magnetic field in cycles 21–23 by Parker's Two-Layer Dynamo Model with meridional circulation. Ann. Geophys., 31, 2023–2028. https://doi.org/10.5194/angeo-31-2023-2013
  72. Shepherd S.J., Zharkov S.I., Zharkova V.V. (2014). Prediction of solar activity from solar background magnetic field variations in cycles 21–23. Astrophys. Journ., 795(1), 46 (8 pp.). https://doi.org/10.1088/0004-637x/795/1/46
  73. Popova E.P., Potemina K.A., Yukhina N.A. (2015). Double cycle of solar activity in a two-layer medium. Geomagnetism and Aeronomy, 54(7), 877–881. https://doi.org/10.1134/s0016793214070111
  74. http://www.swpc.noaa.gov/communities/space-weather-enthusiasts

Download PDF