Astronomical School’s Report, 2015, Volume 11, Issue 1, Pages 34–47
UDC 523.98
Double maxima of 11-year solar cycles
Krivodubskij V.N.
Astronomical Observatory, Kyiv Shevchenko National University, Ukraine
Abstract
The explanation of the observed phenomenon of double peaks of the 11 year sunspot cycles is proposed. The scenario involves five processes of reconstruction of magnetism in the solar convective zone (SCZ): ω effect, magnetic buoyancy, macroscopic turbulent diamagnetism, rotary ∇ρ effect and meridional circulation. It was established that the reconstruction of magnetism in high-latitude and equatorial domains of the SCZ occurs in different modes. Two time-shifted waves of the toroidal field to the solar surface play a key role in the proposed mechanism in the equatorial domain.
Keywords: solar activity; sunspots; 11-year cycles; magnetic fields; turbulence; dynamo model of the solar cycle; turbulent reconstruction of magnetism
References
- Horrebow P. Elementa Mathesos I. Copenhagen. 1792.
- Waldmeier M. (1938). Zs. Astrophys., 16, 439–450.
- Hale G.E. (1908). On the probable existence of a magnetic field in sun-spots. Astrophys. J., 28, 315–343. https://doi.org/10.1086/141602
- Carrington R.C. (1863). Observations of the spots of the Sun. London. 264 p.
- Spörer G. (1874). Publ. Astron. Gesellschaf., 13, 151; Publ. Potsdam Obs. – 1880. – № 1; Publ. Potsdam Obs. – 1894. – № 32.
- Maunder E.W. (1913). Sun, Place of the, Distribution of sun-spots in heliographic latitude, 1874–1913. MNRAS, 73, 112–116. https://doi.org/10.1093/mnras/74.2.112
- Wolf R. Handbuch der Astronomie, 2, Shulthiss. Zurich, 1892.
- Waldmaier M. (1935). Astron. Mitt. Zurich., 1935(133).
- Gnevyshev M.N., Ol’ A.I. (1948). O 22-letnem tsikle solnechnoy aktivnosti. Astron. zhurn., 25(1), 18–20.
- Babckok H.W. (1961). The topology of the Sun's magnetic field and the 22 year cycle. Astrophys. J., 133, 572–1033.
- Obridko V.N. (1985). Solnechnye pyatna i kompleksy aktivnosti. M.: Nauka. 256 p.
- Obridko V.N. (2008). Magnitnye polya i indeksy aktivnosti. V kn.: Plazmennaya geliogeofizika. V 2 t. T.І / Pod red. L.M. Zelenogo, I.S. Veselovskogo. – M.: Fizmatlit, 2008., 41–60.
- Vaynshteyn S.I., Zel’dovich Ya.B., Ruzmaykin A.A. (1980). Turbulentnoe dinamo v astrofizike. M.: Nauka. 352 p.
- Zeldovich Ya.B., Ruzmaikin A.A., Sokoloff D.D. Magnetic Fields in Astrophysics. New York: Gordon and Breach, 1983.
- Charbonneau P. (2010). Dynamo models of the solar cycle. Living Rev. Solar Phys., 7(3), 1–91. https://doi.org/10.12942/lrsp-2010-3
- Hale G.E., Nicholson S.B. (1938). Magnetic observations of sunspots, 1917–1924. Publ. Carnegie Wash. Inst., 1938(498).
- Wolf R. Kortweg Sitzungensberichne. Wien, 1883.
- Ladikov-Roev Yu.P., Cheremnykh O.K. (2010). Matematicheskie modeli sploshnykh sred. Kiev: Naukova dumka. 552 p.
- Zagorodny A.G., Cheremnykh O.K. (2014). Vvedenie v fiziku plazmy. Kiev: Naukova dumka. 696 p.
- Kozak L.V., Kostyk R.I., Cheremnykh O.K. (2013). Dva rezhima turbulentnosti na Solntse. Kinematika i fizika nebes. tel., 29(2), 22–29.
- Kolmogorov A.N. (1941). Lokal’naya struktura turbulentnosti v neszhimaemoy vyazkoy zhidkosti pri ochen’ bol’shikh chislakh Reynol’dsa. Dokl. AN SSSR., 30(4), 299–303.
- Kraichnan R.H. (1965). Internal-ranger spectrum of hydromagnetic turbulence. Phys. Fluids., 8, 1385–1387. https://doi.org/10.1063/1.1761412
- Krause F., Rädler K.-H. (1980). Mean Field Magnetohydrodynamics and Dynamo Theory. Oxford: Pergamon Press, Ltd.. 271 p.
- Krivodubskij V.N. (2015). Small scale alpha-squared effect in the solar convection zone. Kinematics and Physics of Celestial Bodies, 31(2), 55–64. https://doi.org/10.3103/s0884591315020038
- Krivodubskij V.N. (2012). Turbulent effects of sunspot magnetic field reconstruction. Kinematics and Physics of Celestial Bodies, 28(5), 232–238. https://doi.org/10.3103/s0884591312050054
- Krivodubskij V.N. (2005). Turbulent dynamo near tachocline and reconstruction of azimuthal magnetic field in the solar convection zone. Astron. Nachrichten., 326(1), 61–74. https://doi.org/10.1002/asna.200310340
- Stix M. (1981). Theory of the solar cycle. Solar Phys, 74, 79–101. https://doi.org/10.1007/bf00151277
- Krivodubsky V.N. (1984). Intensivnost’ istochnikov magnitnykh poley solnechnogo αω-dinamo. Astron. zhurnal., 61(3), 540–548.
- Krivodubskij V.N. (1998). Rotational anisotropy and magnetic quenching of gyrotropic turbulence in the solar convective zone. Astronomy Reports, 42(1), 122–126.
- Rudiger G., Arlt R. (2002). Physics of solar cycle. In: Advances in nonlinear dynamos / The Fluid Mechanics of Astrophysics and Geophysics, 9, 147–191. https://doi.org/10.1201/9780203493137.ch6
- Ossendrijver M. (2003). The solar dynamo. Astron. Astrophys. Rev., 11(4), 287–367.
- Krivodubskij V.N. (2013). On the extended 23rd solar cycle. Proceed. IAU Symp. – 294., 69–70. https://doi.org/10.1017/s174392131300224x
- Krivodubskij V.N., Lozitska N.I. (2013). Dependence of solar cycles duration on the magnitude of the annual module of the sunspots magnetic field. Proceed. IAU Symp. – 294., 71–72. https://doi.org/10.1017/s1743921313002251
- Vitinsky Yu.I., Kopetsky M., Kuklin G.V. (1986). Statistika pyatnoobrazovatel’noy deyatel’nosti Solntsa. M.: Nauka. 296 p.
- Gnevyshev M.N. (1963). The corona and the 11-year cycle of solar activity. Soviet Astronomy, 7(3), 311–318.
- Antalova A., Gnevyshev M.N. (1965). Principal characteristics of the 11-year solar activity cycle. Soviet Astronomy, 9, 198–201.
- Gnevyshev M.N. (1967). On the 11 years cycle of solar activity. Solar Phys, 1, 107–120. https://doi.org/10.1007/bf00150306
- Gnevyshev M.N. (1977). Essential features of the 11-year solar cycle. Solar Phys, 51, 175–183. https://doi.org/10.1007/bf00240455
- Kopecky M., Kuklin G.V. (1969). A few notes on the sunspot activity in dependence on the phase of the 11-year cycle and on the heliographic latitude. Bull. Astron. Inst. Czech., 20, 22–29.
- Ishkov V.N. (n.d.). The current 23 solar cycle: its evolution and principal features. Abstracts of the conference “Astronomy and space physics at Kyiv University”, Kyiv, Ukraine, May 22–26, 2005, 63–64.
- Schatten K.H., Scherrer P.H., Svalgaard L., Wilcox J.M. (1978). Using dynamo theory to predict the sunspot number during cycle 21. Geophys. Res. Lett., 5, 411–414. https://doi.org/10.1029/gl005i005p00411
- Tassoul J.-L. Theory of Rotating Stars. Princeton: University Press, 1978.
- Komm R.W., Howard R.F., Harvey J.W. (1993). Meridional flow of small photospheric magnetic features. Solar Phys, 147, 207–223. https://doi.org/10.1007/bf00690713
- Snodgrass H.B., Dailey S.B. (1996). Meridional motions of magnetic features in the solar photosphere. Solar Phys, 163, 21–42. https://doi.org/10.1007/bf00165454
- Nesme Ribes E., Meunier N., Vince I. (1997). Solar dynamics over cycle 19 using sunspots as tracers. Astron. Astrophys., 321, 323–329.
- Hathaway D.H. (1996). Doppler measurements of the Sun's meridional flow. Astrophys. Journ., 460, 1027–1033. https://doi.org/10.1086/177029
- Georgieva K. (2011). Why the sunspot cycle is doubly peaked. ISRN Astronomy and Astrophysics. https://doi.org/10.5402/2011/437838
- Georgieva K., Kirov B. (2011). Solar dynamo and geomagnetic activity. Journ. Atmospheric and Solar Terrestrial Physics., 73(2–3), 207–222. https://doi.org/10.1016/j.jastp.2010.03.003
- Giles P.M., Duval T.L.Jr., Scherrer P.H., Bogart R.S. (1997). A subphotospheric flow of material from the Sun's equator to its poles. Nature (London), 390, 52–54. https://doi.org/10.1038/36294
- Braun D.C., Birc A.C. (2008). Prospects for the detection of the deep solar meridional circulation. Astrophys. J. Lett., 689, L161-L165. https://doi.org/10.1086/595884
- Zhao J., Kosovichev A.G. (2004). Torsional oscillation, meridional flows, and vorticity inferred in the upper convection of the Sun by time-distance helioseismology. Astrophys. J., 603, 776–784. https://doi.org/10.1086/381489
- Kosovichev A.G. (2008). Probing solar and stellar interior dynamics and dynamo. Advances in Space Research, 41, 830–837. https://doi.org/10.1016/j.asr.2007.05.023
- Van Ballegooijen A.A., Choudhuri A.R. (1988). The possible role of meridional circulation in suppressing magnetic buoyancy. Astrophys. J., 333, 965–977. https://doi.org/10.1086/166805
- Nandy D., Choudhuri A.R. (2002). Explaining the latitudinal distribution of sunspots with deep meridional flow. Science, 296, 1671–1674. https://doi.org/10.1126/science.1070955
- Jiang J., Chatterjee P., Choudhuri A. (2007). Solar activity forecast with a dynamo. MNRAS, 381(4), 1527–1542. https://doi.org/10.1111/j.1365-2966.2007.12267.x
- Fisher G.Y., Fan J., Longcope D.W., Linton M.G., Abbett W.P. (2000). Magnetic flux tubes inside the Sun. Physics of Plasma, 7(5), 2173–2179. https://doi.org/10.1063/1.874050
- Hathaway D.H., Nandy D., Wilson R.M., Reichmann E.J. (2003). Evidence that a deep meridional flow sets the sunspot cycle. Astrophys. J., 589, 665–670. https://doi.org/10.1086/374393
- Parker E.N. (1955). The formation of sunspots from the solar toroidal field. Astrophys. J., 121, 491–507. https://doi.org/10.1086/146010
- Zel’dovich Ya.B. (1956). Magnitnoe pole pri dvumernom dvizhenii provodyaschey zhidkosti. ZHETF, 31, 154–156.
- Rädler K.-H. (1968). Zur Elektrodynamik turbulent bewegterm leitender Mediem. Zeits. Naturforsch. I..
- Stix M. (2002). The Sun: an introduction, second edition. Berlin: Springer-Verlag. 490 p.
- Kitchatinov L.L., Rudiger G. (1992). Magnetic field advection in inhomogeneous turbulence. Astron. Astrophys., 260, 494–498.
- Drobyshevskij E.M. (1977). Magnetic field transfer by two-dimensional convection and solar “semi-dynamo”. Astrophys. Space Sci., 46, 41–49. https://doi.org/10.1007/bf00643752
- Vaynshteyn S.I. (1983). Magnitnye polya v kosmose. M.: Nauka. 240 p.
- Kichatinov L.L. (1982). O magnitnoy gidrodinamike srednikh poley v neodnorodnoy turbulentnoy srede. Magnit. gidrodinamika., 1982(3), 67–73.
- Kitchatinov L.L. (1991). Turbulent transport of magnetic fields in a highly conducting rotating fluid and the solar cycle. Astron. Astrophys., 243(2), 483–491.
- Christensen-Dalsgaard J. (2002). Helioseismology. Rev. Mod. Phys., 74, 1073–1129. https://doi.org/10.1103/revmodphys.74.1073
- Howe R., Christensen-Dalsgaard J., Hill F., Komm R., Larsen R. M., Schou J., Thompson M., Toomre J. (2000). Dynamic variations at the base of the solar convection zone. Science, 287, 2456–2460. https://doi.org/10.1126/science.287.5462.2456
- Schou J., Antia H.M., Basu S., et al. (1998). Helioseismic studies of differential rotation in the solar envelope by the Solar Oscillations Investigation using the Michelson Doppler Imager. Astrophys. J., 505, 390–417. https://doi.org/10.1086/306146
- Solov’ev A.A., Kirichek E.A. (2004). Diffuznaya teoriya solnechnogo magnitnogo tsikla. Elista–SPb.: Izd-vo Kalmytskogo GU. 182 p.
- Popova E., Zharkova V., Zharkov S. (2013). Probing latitudinal variations of the solar magnetic field in cycles 21–23 by Parker's Two-Layer Dynamo Model with meridional circulation. Ann. Geophys., 31, 2023–2028. https://doi.org/10.5194/angeo-31-2023-2013
- Shepherd S.J., Zharkov S.I., Zharkova V.V. (2014). Prediction of solar activity from solar background magnetic field variations in cycles 21–23. Astrophys. Journ., 795(1), 46 (8 pp.). https://doi.org/10.1088/0004-637x/795/1/46
- Popova E.P., Potemina K.A., Yukhina N.A. (2015). Double cycle of solar activity in a two-layer medium. Geomagnetism and Aeronomy, 54(7), 877–881. https://doi.org/10.1134/s0016793214070111
- http://www.swpc.noaa.gov/communities/space-weather-enthusiasts
Download PDF