Astronomical School’s Report, 2014, Volume 10, Issue 2, Pages 85–89

https://doi.org/10.18372/2411-6602.10.2085
Download PDF
UDC 523.98

New turbulent effects of reconstruction of solar magnetism

Krivodubskij V.N.

Astronomical Observatory, Kyiv Shevchenko National University, Ukraine

Abstract

Two effects of turbulent transfer of magnetic field in the convective zone of the Sun, the topological pumping and “turbulent buoyancy”, are investigated. It is shown that the topological pumping contributes to the vertical stratification of the magnetic fields into the magnetic tubes. While the “turbulent buoyancy” near the bottom of the solar convection zone is able to compensate the classical magnetic buoyancy of strong magnetic fields.

Keywords: turbulence; magnetic fields; solar convection zone

References

  1. Vaynshteyn S.I., Zel’dovich Ya.B., Ruzmaykin A.A. (1980). Turbulentnoe dinamo v astrofizike. M.: Nauka. 352 p.
  2. Krauze F., Redler K.-Kh. (1984). Magnitnaya gidrodinamika srednikh poley i teoriya dinamo. M.: Mir. 320 p.
  3. Stix M. (1981). Theory of the solar cycle. Solar. Phys., 74, 79–101. https://doi.org/10.1007/bf00151277
  4. Rüdiger G., Arlt R. (2002). Physics of solar cycle. In: Advances in nonlinear dynamos // The Fluid Mechanics of Astrophysics and Geophysics, 9, 147–191. https://doi.org/10.1201/9780203493137.ch6
  5. Ossendrijver M. (2003). The solar dynamo. Astron. Astrophys. Rev., 11(4), 287–367.
  6. Kitchatinov L.L., Olemskoj S.V. (2011). Solar dynamo model with nonlocal alpha-effect. Astronomy Letters, 37(4), 286–292. https://doi.org/10.1134/s1063773711040037
  7. Rüdiger G., Kitchatinov L.L., Brandenburg A. (2011). Cross helicity and turbulent magnetic diffusivity in the solar convection zone. Solar Phys, 269, 3–12. https://doi.org/10.1007/s11207-010-9683-4
  8. Devlen E., Brandenburg A., Mitra D. (2013). A mean field dynamo from negative eddy diffusivity. MNRAS, 432, 1651–1657. https://doi.org/10.1093/mnras/stt590
  9. Olemskoy S.V., Choudhuri A.R., Kitchatinov L.L. (2013). Fluctuations in the alpha-effect and grand solar minima. Astronomy Reports, 57(6), 458–468. https://doi.org/10.1134/s1063772913050065
  10. Pipin V. (2013). Helicity-vorticity turbulent pumping of magnetic fields in the solar convection zone. Geophys. Astrophys. Fluid Dynamics., 107, 185–206. https://doi.org/10.1080/03091929.2012.714376
  11. Tlatov A., Illarionov E., Sokoloff D., Pipin V. (2013). A new dynamo pattern revealed by the tilt angle of bipolar sunspot groups. MNRAS, 432(4), 2975–2984. https://doi.org/10.1093/mnras/stt659
  12. Zhang H., Brandenburg A., Sokoloff D. (2014). Magnetic helicity and energy spectra of a solar active region. Astrophys. J., 784L, L45. https://doi.org/10.1088/2041-8205/784/2/l45
  13. Krivodubskij V.N. (2005). Turbulent dynamo near tachocline and reconstruction of azimuthal magnetic field in the solar convection zone. Astron. Nachrichten., 326(1), 61–74. https://doi.org/10.1002/asna.200310340
  14. Krivodubskij V.N. (2012). Turbulent effects of sunspot magnetic field reconstruction. Kinematics and Physics of Celestial Bodies, 28(5), 232–238. https://doi.org/10.3103/s0884591312050054
  15. Bérnard H. (1900). Revue Générale des Sciences Peres et Appliquees, 11, 1261.
  16. Drobyshevski E.M., Yuferev V.S. (1974). Topological pumping of magnetic flux by three-dimensional convection. Journ. Fluid Mech., 65, 33–44. https://doi.org/10.1017/s0022112074001236
  17. Getling A.V., Buchnev A.A. (2010). Some structural features of the convective-velocity field in the solar photoshere. Astronomy Reports, 54, 254–259. https://doi.org/10.1134/s1063772910030078
  18. Bumba V., Howard R. (1965). Large-scale distribution of solar magnetic fields. Astrophys. J., 141(4), 1502–1512. https://doi.org/10.1086/148238
  19. Gilman P.A. (1977). Nonlinear dynamics of boussinesq convection in a deep rotating spherical shell. I. Geophys. Astrophys. Fluid Dynamics., 8, 93–135. https://doi.org/10.1080/03091927708240373
  20. Simon G.W., Leighton R.B. (1964). Velocity fields in the solar atmosphere. III. Large-scale motions, the chromospheric network, and magnetic fields. Astrophys. J., 140, 1120–1147. https://doi.org/10.1086/148010
  21. Simon G.W., Brandt P.N., November L.J., Scharmer G.B., Shine R.A. Large-scale photospheric motions: first results from an extraordinary eleven-hour granulation observation In: Solar Surface Magnetism, eds R.J.Rutten, C.J.Schrijver, Science Institute, Advanced Science Institute Series C: Mathematical and Physical Sciences, V.433 (Dordrecht: Kluver, 1994), P.261. https://doi.org/10.1007/978-94-011-1188-1_23
  22. November L.J., Toomre J., Gebbie K.V., Simon G.W. (1981). The detection of mesogranulation on the Sun. Astrophys. J., 245L, L123-L126. https://doi.org/10.1086/183539
  23. November L.J. (1986). Measurement of geometric distortion in a turbulent atmosphere. Applied Optics, 25, 392–397. https://doi.org/10.1364/ao.25.000392
  24. Prist E.R. (1985). Solnechnaya elektrodinamika. M.: Mir. 592 p.
  25. Parker E.N. (1955). The formation of sunspots from the solar toroidal field. Astrophys. J., 121, 491–507. https://doi.org/10.1086/146010
  26. Stix M. (2002). The Sun: an introduction, second edition. Berlin: Springer-Verlag. 490 p.
  27. Drobyshevskij E.M. (1977). Magnetic field transfer by two-dimensional convection and solar “semi-dynamo”. Astrophys. Space Sci., 46, 41–49. https://doi.org/10.1007/bf00643752
  28. Vaynshteyn S.I. (1983). Magnitnye polya v kosmose. – M.: Nauka, 1983. – 240 s. .
  29. Kitchatinov L.L., Rüdiger G. (1992). Magnetic field advection in inhomogeneous turbulence. Astron. Astrophys., 260, 494–498.
  30. Dziembovsky W.A, Goode P.R., Kosovichev A.G., Schou J. (2000). Signature of the rise of cycle 23. Astrophys. J., 537, 1026–1038. https://doi.org/10.1086/309056
  31. Antia H.M., Chitre S.M., Thompson M.J. (2003). On variation of the latitudinal structure of the solar convection zone. Astron. Astrophys., 399, 329–336. https://doi.org/10.1051/0004-6361:20021760

Download PDF