Astronomical School’s Report, 2014, Volume 10, Issue 1, Pages 70–74
UDC 504.064:535.361.2:519.6
Estimation biochemical components in vegetation based on statistical learning methods and remote sensing data
Semeniv O.V.
Space Research Institute NASU-SSAU, Ukraine
Abstract
An approach for vegetation state estimation is presented in the paper. It is based on the determination of the chlorophyll content in the plant leaves using spectral data and statistical learning methods. The problem of model identification is presented as dual optimization problem. Also the experimental data obtaining procedure, numerical results and comparative analysis are shown.
Keywords: remote sensing; estimation; SVM; vegetation state; model identification
References
- Andreeva A.V., Buznikov A.A., Timofeev A.A. i dr. (2006). Otsenka ekologicheskogo sostoyaniya okruzhayuschey sredy po spektram otrazheniya indikatornykh vidov rastitel’nosti. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 3(2), 265–270.
- Andreeva A.V., Buznikov A.A., Skryabin S.V. i dr. (2007). Issledovanie kharaktera izmeneniya opticheskikh kharakteristik rastitel’nosti pod vozdeystviem tyazhelykh metallov dlya razrabotki metoda distantsionnoy diagnostiki zagryazneniya. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 4(2), 175–182.
- Bidiuk P.I., Mytnyk O.Yu. (2004). Zastosuvannia henetychnoho alhorytmu v zadachakh otsiniuvannia vmistu khlorofilu v roslynnosti. Naukovi visti NTUU “KPI”, 2004(4), 65–70.
- Kyncheva R., Iliev I., Borisova D., Gorgiev G. (2011). Rannee obnaruzhenie fiziologicheskogo stressa rastitel’nosti po mnogospektral’nym dannym. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 8(4), 319–326.
- Semeniv O.V., Shatokhina Yu.V., Yatsenko V.O. (2008). Validatsiya modeley klassifikatsii giperspektral’nykh dannykh. Problemi upravleniya i informatiki, 2008(3), 113–119.
- Yakunina I.V., Popov N.S. (2009). Metody i pribory kontrolya okruzhayuschey sredy. Ekologichesky monitoring. Tambov: Izd-vo Tamb. gos. tekhn. un-ta, 2009. – 188 s. .
- Yatsenko V.O., Kochubey S.M., Khandriga P.A. i dr. (2007). Novyy metod distantsionnogo otsenivaniya soderzhaniya khlorofilla v rastitel’nosti i ego programmno-apparatnaya realizatsiya. Kosmіchna nauka і tekhnologіya, 2007(3(13)), 35–45.
- Albayrak S. (2008). Use of reflectance measurements for the detection of N, P, K, ADF and NDF Contents in sainfoin pasture. Sensors, 2008(8), 7275–7286. https://doi.org/10.3390/s8117275
- Bousquet O., Boucheron S., Lugosi G. (2003). Introduction to statistical learning theory. Advanced Lectures on Machine Learning, 169–207. https://doi.org/10.1007/978-3-540-28650-9_8
- Choe E., Meer F., Ruitenbeek F., et. al. (2008). Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain. Remote Sensing of Environment, 112, 3222–3233. https://doi.org/10.1016/j.rse.2008.03.017
- Delalieux S., Auwerkerken A., Verstraeten W.W., et al. (2009). Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves. Remote sensing, 2009(1(4)), 858–874. https://doi.org/10.3390/rs1040858
- Feret J.B., François C., Asner G.P., et at. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments, Remote Sensing of Environment, 2008, Iss. 112, P.3030–3043. https://doi.org/10.1016/j.rse.2008.02.012
- Lamb D.W., Steyn-Ross M., Schaare P., et al. (2002). Estimating leaf nitrogen concentration in rye grass (Lolium spp.) pasture using the chlorophyll red-edge: theoretical modelling and experimental observations. Int. J. Remote Scens., 2002(23), 3619–3648. https://doi.org/10.1080/01431160110114529
- Lelong C.C.D., Roger J.-M., Brégand S., et al. (2010). Evaluation of oil-palm fungal disease infestation with canopy hyperspectral reflectance data. Sensors, 10, 734–747. https://doi.org/10.3390/s100100734
- Platt J.C. (1998). Fast training of support vector machines using sequential minimal optimization / In B. Scholkopf, C.J.C. Burges, A.J. Smola (Eds), Advances in kernel methods – support vector learning. Cambridge, MA: MIT Press, 185–208.
- Rosso P.H., Pushnik J.C., Mui Lay, Ustin S.L. (2005). Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination. Environmental Pollution, 137, 241–252. https://doi.org/10.1016/j.envpol.2005.02.025
- Smith K.L., Steven M.D., Colls J.J. (2004). Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sensing of Environment, 92, 207–217. https://doi.org/10.1016/j.rse.2004.06.002
- Smola A.J., Scholkopf B. (2004). A tutorial on support vector regression. Statistics and Computing. – № 14., 199–222. https://doi.org/10.1023/b:stco.0000035301.49549.88
- Suárez L., Zarco-Tejada P.J., Berni J.A.J., et al. (2009). Modelling PRI for water stress detection using radiative transfer models. Remote Sensing of Environment, 113, 730–744. https://doi.org/10.1016/j.rse.2008.12.001
- Zarco-Tejada P.J., Berni J.A.J., Suárez L., et al. (2009). Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. Remote Sensing of Environment, 113, 1262–1275. https://doi.org/10.1016/j.rse.2009.02.016
Download PDF