Astronomical School’s Report, 2013, Volume 9, Issue 2, Pages 111–114

https://doi.org/10.18372/2411-6602.09.2111
Download PDF
UDC 523.4+520.8

Determining the size of craters on the surfaces of atmosphereless bodies in Solar system with ground-based methods

Klianchin A.I.1, Prokof'eva-Mikchailovskaya V.V.2

1Main Astronomical Observatory NAS of Ukraine
2Crimean Astrophysical Observatory, Ukraine

Abstract

A new method of determining the size of craters on the surfaces of atmosphereless bodies of the Solar system, called spectral-frequency method (SFM), was developed at the Crimean Astrophysical Observatory by V. V. Prokofieva-Mikhaylovska, N. A. Rublevsky in collaboration with V. V. Busarev from SAI (MSU). SFM of studying color- or lightcurves of asteroids allows to obtain information about the size of details on their surfaces with ground-based tools. Visibility of craters is explained with the inverse coherent scattering of solar radiation on the regolith ejected during bodies collisions.

Keywords: spectral-frequency method; asteroid; sizes of craters; light dispersion; lightcurves

References

  1. Abramenko A.N. et al. Televizionnaya astronomiya red. Nikonov V.B, M.: Nauka, 1984, P. 272.
  2. Akimov L.A., Lupishko D.F., Bel’skaya I.N. (1983). O fotometricheskoy neodnorodnosti poverkhnostey asteroidov. Astron. zhurn., 60(5), 999–1004.
  3. Burns J.A., Tedesco E.F. (1979). Asteroid light curves: results for rotations and shapes. Asteroids I. / Ed. Gehrels T. – Univ. Ariz. Press., 1979., 494–527.
  4. Busarev V.V., Prokof’eva-Mikhaylovskaya V.V., Bochkov V.V. (2007). Spektral’nyy i spektral’no-chastotnyy metody issledovaniya bezatmosfernykh tel solnechnoy sistemy. Uspekhi fiz. nauk., 177(6), 663–675. https://doi.org/10.3367/ufnr.0177.200706d.0663
  5. Busarev V.V., Prokof’eva-Mikhaylovskaya V.V., Rublevsky A.N. (2009). Razrabotka i primenenie spektral’nochastotnogo metoda dlya issledovany poverkhnostey bezatmosfernykh tel. Izv. Krym. Astrofiz. Obs., 104(6), 95–102.
  6. Busarev V.V., Prokof’eva-Mikhaylovskaya V.V., Rublevsky A.N., Gor’kavyy N.N. (2012). Pyatna na asteroidakh i vozmozhnost’ ikh izucheniya nazemnymi sredstvami. Kinem. i fiz. neb. tel., 3–15.
  7. Voloschuk Yu.I., Kascheev B.L., Kruchinenko V.G. (1989). Meteory i meteornoe veschestvo. K.: Naukova dumka. 296 p.
  8. Karachkina L.G. Prokof’eva V.V., Taraschuk V.P. (1998). Issledovanie modulyatsii bleska asteroida 1620 Geograf. Astron. vestn., 32(4), 327–339.
  9. Prokof’eva V.V., Bochkov V.V., Busarev V.V. (2005). Issledovanie struktury poverkhnosti M-asteroida 21 Lyutetsiya spektral’nym i chastotnym metodami. Actron. Vestn., 39(5), 457–468.
  10. Prokof’eva-Mikhaylovskaya V.V., Rublevsky A.N., Bochkov V.V. (2008). Razmery tsvetovykh pyaten na poverkhnosti asteroida 4 Vesta. Astron. vestn., 42(6), 540–556.
  11. Prokof’eva-Mikhaylovskaya V.V., Rublevsky A.N., Bochkov V.V. (2008). Vodnye soedineniya na poverkhnosti asteroida 4 Vesta. Izv. Krym. Astrofiz. Obs., 104(1), 218–228.
  12. Prokof’eva-Mikhaylovskaya V.V., Rublevsky A.N. (2013). Sravnenie razmerov obrazovany na poverkhnosti asteroida 4 Vesta, opredelennykh iz nazemnykh i kosmicheskikh nablyudeny. Kinem. i fiz. neb. tel., 29(5), 64–74.
  13. Terebizh V.Yu. (1992). Analiz vremennykh ryadov v astrofizike. M.: Nauka. 290 p.
  14. Ostro S.J., Jurgens R.F., Rosema K.D., et al. (1996). Radar observations of asteroid 1620 Geographos. Icarus, 121, 46–66. https://doi.org/10.1006/icar.1996.0071
  15. http://bourabai.narod.ru/impact08.htm

Download PDF