Astronomical School’s Report, 2013, Volume 9, Issue 2, Pages 149–154

Download PDF

UDC 504:546:551.510

Retrieval source areas producing aerosols arrived in central part of Ukraine using back-trajectory statistics

Kabashnikov V.P., Milinevsky G.P., Bovchaliuk A.P., Danylevsky V.O.

Abstract

Concentration weighted trajectory method for aerosol sources retrieval technique based on the joint statistical analysis of the aerosol column volume concentrations and back-trajectory data was used to estimate spatial distribution of aerosol sources of particles arrived in the Central Ukraine region and observed at Kyiv site data. The column volume concentration data for Kyiv AERONET network site were used. It was shown that the north-east territories (in relation to Kyiv monitoring site) give small contribution to coarse mode aerosol content. The events of increased coarse mode aerosol concentration have been caused by sources at south-east regions. Fine mode of aerosol particles arrived to the Kyiv station mainly from north and north-eastern territories.

Keywords: atmosphere; aerosol source; transfer; back-trajectory; trajectory statistics method

References

  1. Burak R.N., Dementsova I.A., Kabashnikov V.P., Metel’skaya N.S. (2010). TRAJECTORY – programma dlya rascheta traektory dvizheniya vozdushnykh mass. Sistema upravleniya ekologicheskoy bezopasnost’yu: sb. tr. IV zaochnoy mezhdunar. nauch.-prakt. konf., Ekaterinburg, 27–28 maya 2010 g.: v 2 t. / Ekaterinburg, 2010. – T. 2., 127–131.
  2. Kabashnikov V.P., Kuz’min V.N., Petruchuk A., Sobolevsky P., Chaykovsky A.P. (2008). Vyyavlenie istochnikov aerozol’nogo zagryazneniya atmosfery na osnove dannykh distantsionnogo zondirovaniya i statistiki obratnykh traektory. Optika atmosfery i okeana, 21(1), 48–52.
  3. Marchuk G.I. Matematicheskoe modelirovanie v probleme okruzhayuschey sredy. M.: Nauka, 1982. S.320.
  4. Raputa V.F., Krylova A.I. (1995). Obratnaya zadacha polucheniya otsenok parametrov istochnika primesi v pogranichnom sloe atmosfery. Meteorologiya i gidrologiya, 3, 49–58.
  5. Apadula F., Gotti A., Pigini A., et al. (2003). Localization of source and sink regions of carbon dioxide through the method of the synoptic air trajectory statistics. Atmos. Environ., 37(18), 3757–3770.
  6. Ashbaugh L.L. (1983). A statistical trajectory technique for determining air pollution source regions. J. of Air Pollution Control Assessment., 33(12), 1096–1098.
  7. Ashbaugh L.L., Malm W.C., Sadeh W.Z. (1985). A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmos. Environ., 19(7), 1263–1270.
  8. Balin Yu.S., Ershov A.D. (1999). Vertical structure of aerosol fields in the atmospheric boundary layer reconstructed from laser sensing data. Atmos. Oceanic Opt., 12(7), 592–599.
  9. Charron A., Plaisance H., Sauvage S., et al. (2000). A study of the source – receptor relationships influencing the acidity of precipitation collected at a rural site in France. Atmos. Environ., 34(22), 3665–3674.
  10. Chen L.-W.A., Watson J.G., Chow J.C., DuBois D.W., and Herschberger L. (2011). PM2.5 source apportionment: reconciling receptor models for U.S. nonurban and urban long-term networks. Journal of the Air and Waste Management Association, 2011, 1204–1217.
  11. Dubovik O., Lapyonok T., Kaufman Y.J., et al. (2008). Retrieving global aerosol sources from satellites using inverse modeling. Atmos. Chem. Phys., 8, 209–250.
  12. European Monitoring and Evaluation Programme EMEP [Electronic resource]. (2013) Mode of access: http://www.ceip.at/ceip/.
  13. Holben B.N., Eck T.F., Slutsker I., et al. (1998). AERONET – A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1–16.
  14. Kabashnikov V.P., Chaikovsky A.P., Kucsera T.L., Metelskaya N.S. (2011). Accuracy estimation of the trajectory statistical methods. Atmos. Environ., 45, 5425–5430.
  15. Kondratyev K.Y., Ivlev L.S., Krapivin V.F., Varostos C.A. Atmospheric Aerosol Properties: Formation, Processes and Impacts Praxis Publishing Ltd, Chichester, UK, 2006. 572 p.
  16. Poirot R.L., Wishinski P.R. (1986). Visibility, sulfate and air mass history associated with the summertime aerosol in Northern Vermont. Atmos. Environ., 20(18), 1457–1469.
  17. Rua A., Hernandez E., de las Parras J., et al. (1998). Sources of SO2, SO42-, NOx, and NO3- in the Air of Four Spanish Remote Stations. Journal of the Air and Waste Management Association, 1998, 838–845.
  18. Seibert P., Kromp-Kolb H., Baltensperger U., et al. (1994). Trajectory analysis of aerosol measurements at high alpine sites. Transport and Transformation of Pollutants in the Troposphere, Academic Publishing, Den Haag, 1994, 689–693.
  19. Stohl A. (1996). Trajectory statistics – a new method to establish source-receptor relationship of air pollutants and its applications to the transport of particulate sulfate in Europe. Atmos. Environ., 30(4), 579–587.
  20. Wang Y.Q., Zhang X.Y., Arimoto R. (2006). The contribution from distant dust sources to the atmospheric particulate matter loadings at XiAn, China during spring. Science of the Total Environment, 368(2–3), 875–883.
  21. Wotawa, G., Kröeger, H. (1999). Testing the ability of trajectory statistics to reproduce emission inventories of air pollutants in cases of negligible measurement and transport errors. Atmos. Environ., 33(18), 3037–3043.
  22. Wotawa G., Kröger H., Stohl A. (2000). Horizontal ozone transport towards the Alps – results from trajectory analyses and photochemical model studies. Atmos. Environ., 34(7), 1367–1377.
  23. Zhao W., Hopke P. K., Zhou L. (2007). Spatial distribution of source locations for particulate nitrate and sulfate in the upper-midwestern United States. Atmos. Environ., 41, 1931–1847.
  24. http://aeronet.gsfc.nasa.gov/new_web/index.html

Download PDF