Astronomical School’s Report, 2013, Volume 9, Issue 1, Pages 20–27

https://doi.org/10.18372/2411-6602.09.1020
Download PDF
UDC 519.2 (075.8)

Cosmological and astrophysical challenges of General Relativity

Zhdanov V.I., Fedorova E.V., Alexandrov A.N., Slyusar V.M.

Astronomical Observatory, Kyiv Shevchenko National University, Ukraine

Abstract

We review experimental confirmations of the General Relativity theory (GRT) and discuss problems concerning applications of GRT in strong gravitational fields. The tests of GRT in the Solar system and in the double star systems containing pulsars are analysed. We formulate some problems that arise in theoretical considerations of compact astrophysical objects in presence of the scalar fields. We argue that, in the near future, the observations of X-ray spectra form active galactic nuclei will enable us to rule out at least part of these models with the scalar fields.

Keywords: gravitation; relativity theory; scalar fields; black holes

References

  1. Aleksandrov A. N., Zhdanov V.I., Fedorova E.V. (2010). Asimptoticheskie formuly dlya koeffitsienta usileniya gravitatsionno-linzovoy sistemy vblizi kaustiki-skladki. Pis’ma v AZH, 36, 344–352.
  2. Bronnikov K.A., Rubin S.G. (2008). Lektsii po gravitatsii i kosmologii. M.: MIFI. 460 p.
  3. Zakharov A.F. (1997). Gravitatsionnye linzy i mikrolinzy. M.: Yanus-K. 328 p.
  4. Linde A.D. (1990). Fizika elementarnykh chastits i inflyatsionnaya kosmologiya. M.: Nauka. 280 p.
  5. Minakov A.A., Vakulik V.G. (2010). Statistichesky analiz gravitatsionnogo mikrolinzirovaniya. K.: Naukova Dumka. 261 p.
  6. Novikov I.D., Kardashov N.S., Shatsky A.A. (2007). Mnogokomponentnaya Vselennaya i astrofizika krotovykh nor. UFN, 177, 1017–1023. https://doi.org/10.3367/ufnr.0177.200709g.1017
  7. Pit’eva E.V. (2005). Relyativistskie effekty i szhatie Solntsa iz radarnykh nablyudeny planet i kosmicheskikh apparatov. Pis’ma v Astron. zhurn., 31, 340–349.
  8. Solov’ev D.A., Tsirulev A.N. (2010). Ustoychivye krugovye orbity vblizi gravitiruyuschikh skalyarnykh konfiguratsy. Vestnik TvGU. Ser.: Prikl. mat., 19, 29–41.
  9. Uill K. (1985). Teoriya i eksperiment v gravitatsionnoy fizike. M.: Energoatomizdat. 296 p.
  10. Fisher I.Z. (1948). Pole skalyarnogo mezona s uchetom gravitatsionnykh effektov. ZHETF, 18, 636–640.
  11. Yatskiv Ya.S., Aleksandrov O.M., Vavylova I.B., ta in. (2005). Zahal’na teoriya vidnosnosti: vyprobuvannia chasom. K.: Akademperiodyka. 288 p.
  12. Alexandrov A.N., Zhdanov V.I. (2011). Asymptotic expansions and amplification of a gravitational lens near a fold caustic. MNRAS, 417, 541–554. https://doi.org/10.1111/j.1365-2966.2011.19296.x
  13. Antonucci R., Miller J. (1985). Spectropolarimetry and the nature of NGC 1068. Ap. J., 297, 621–623. https://doi.org/10.1086/163559
  14. Bekenstein J.D. (1972). Transcendence of the Law of Baryon-Number Conservation in Black-Hole. Physics. Phys. Rev. Letters., 28, 452–455. https://doi.org/10.1103/physrevlett.28.452
  15. Bekenstein J.D. (1972). Nonexistence of Baryon Number for Static Black Holes. Phys. Rev. D., 5, 1239–1246; 2403–2412. https://doi.org/10.1103/physrevd.5.1239
  16. Berti E., Cardoso V., Gualtieri L., Horbatsch M., Sperhake U. (2013). Numerical simulations of single and binary black holes in scalar-tensor theories: Circumventing the no-hair theorem. Physical Review D. https://doi.org/10.1103/physrevd.87.124020
  17. Blandford R., Znajek R. (1977). Electromagnetic extraction of energy from Kerr black holes. MNRAS, 179, 433–456. https://doi.org/10.1093/mnras/179.3.433
  18. Blandford R.D. (1999). Relativistic accretion. In: Astrophysical Disks. Proc. ASP Conf. Ser. (Ed. J.A.Sellwood and J.J.Goodman.), 160, 265-278.
  19. Breton R.P., Kaspi V.M., Kramer M., et al. (2008). Relativistic Spin Precession in the Double Pulsar. Science, 104–107. https://doi.org/10.1126/science.1159295
  20. Burgay M., D'Amico N., Possenti A., et al. (2003). An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature, 426, 531–533. https://doi.org/10.1038/nature02124
  21. Chartas G., Agol E., Eracleous M., et al. (2002). Caught in the act: Chandra observations of microlensing of the radio-loud quasar MG J0414+0534. Ap. J., 568, 509–521. https://doi.org/10.1086/339162
  22. Chartas G., Eracleous M., Agol E., Gallagher S.C. (2004). Chandra observations of the Cloverleaf quasar H1413+117: A unique laboratory for microlensing studies of a LoBAL quasar. Ap.J., 606, 78–84. https://doi.org/10.1086/382743
  23. Chartas G., Kochanek C.S., Dai X., et al. (2012). Revealing the structure of an accretion disk through energy dependent X-ray microlensing. Ap. J., 12. https://doi.org/10.1088/0004-637x/757/2/137
  24. Chase J.E. (1970). Event horizons in static scalar-vacuum space-times. Comm. Math. Phys., 19, 276–288. https://doi.org/10.1007/bf01646635
  25. Chowdhury A.N., Patil M., Malafarina D., Joshi P.S. (2012). Circular geodesics and accretion disks in the Janis–Newman–Winicour and gamma metric spacetimes. Phys. Rev. D.. https://doi.org/10.1103/physrevd.85.104031
  26. Chruściel P.T., Costa J.L., Heusler M. (2012). Stationary Black Holes: Uniqueness and Beyond. Living Rev. Relativity., 15, 7–73. (http://www.livingreviews.org/lrr-2012-7). https://doi.org/10.12942/lrr-2012-7
  27. Dai X., Chartas G., Agol E., Bautz M.W., Garmire G.P. (2003). Chandra observations of QSO 2237+0305. Ap. J., 589, 100–110. https://doi.org/10.1086/374548
  28. De Rosa A., Bassani L., Ubertini P., et al. (2008). An X-ray view of absorbed INTEGRAL AGN. Astron. Astrophys., 483, 749–758. https://doi.org/10.1051/0004-6361:20078319
  29. Fabian A.C., Miniutti G. (2009). The X-ray spectra of accreting Kerr black holes. In: “Kerr Spacetime: Rotating Black Holes in General Relativity”, Eds. D.L.Wiltshire, M.Visser and S.M.Scott. – Cambridge Univ. Press, 2009. – 377 p. (astro-ph/0507409). .
  30. Fedorova E., Beckmann V., Neronov A., Soldi S. (2011). Studying the long-time variability of the Seyfert 2 galaxy NGC 4388 with INTEGRAL and Swift. MNRAS, 417, 1140–1147. https://doi.org/10.1111/j.1365-2966.2011.19335.x
  31. Fedorova E.V., Zhdanov V.I., Vignali C., Palumbo G.G.C. (2008). Q2237+0305 in X-rays: spectra and variability with XMM-Newton. Astron. Astrophys., 490, 989–994. https://doi.org/10.1051/0004-6361:20078730
  32. Ghez A.M., Salim S., Weinberg N.N., et al. (2008). Measurement distance and properties of the Milky way's sentral supermassive black hole with stellar orbits. Ap. J., 689, 1044–1062. https://doi.org/10.1086/592738
  33. Grieger B., Kayser R., Refsdal S. (1988). Gravitational micro-lensing as a clue to quasar structure. Astron. Astrophys., 194, 54–64.
  34. Harada T., Iguchi H., Nakao K. (2002). Physical Processes in Naked Singularity Formation. Prog. Theor. Phys., 107, 449–524. https://doi.org/10.1143/ptp.107.449
  35. Hohensee M.A., Leefer N., Budker D., et al. (2013). Limits on violations of Lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium. ArXiv:1303.2747 (2013). . https://doi.org/10.1103/physrevlett.111.050401
  36. Horbatsch M.W., Burgess C.P. (2012). Cosmic black-hole hair growth and quasar OJ287. JCAP, 20. (ArXiv:1111.4009). https://doi.org/10.1088/1475-7516/2012/05/010
  37. Hulse R.A., Taylor J.H. (1975). Discovery of a pulsar in a binary system. Astrophys. J. Lett., 195, L51-L53. https://doi.org/10.1086/181708
  38. Jacobson T. (1999). Primordial Black Hole Evolution in Tensor-Scalar Cosmology. Phys. Rev. Lett., 83, 2699–2702. (Astro-ph/9905303). https://doi.org/10.1103/physrevlett.83.2699
  39. Janis A.I., Newman E.T., Winicour J. (1968). Reality of the Schwarzschild Singularity. Phys. Rev. Lett., 20, 878–880. https://doi.org/10.1103/physrevlett.20.878
  40. Jovanović R. (2012). The broad Fe Kα line and supermassive black holes. New Astronomy Reviews, 37–48. https://doi.org/10.1016/j.newar.2011.11.002
  41. Kardashev N.S., Novikov I.D., Shatskiy A.A. (2007). Astrophysics of Wormholes. Int. Journ. Modern Phys. D., 16, 909–926. (Astro-ph/0610441v2). https://doi.org/10.1142/s0218271807010481
  42. Kramer M. (2013). Probing gravitation with pulsars. Proc. Int. Astron. Union., 291, 19–26.
  43. Kramer M., Stairs I.H., Manchester R.N., et al. (2006). Tests of General Relativity from Timing the Double Pulsar. Science, 97–102. https://doi.org/10.1126/science.1132305
  44. Laor A. (1991). Line profiles from a disk around a rotating black hole. Astrophysical Journal, 376, 90–94. https://doi.org/10.1086/170257
  45. Longair M.S. (2011). High Energy Astrophysics. Cambridge University Press. 861 p.
  46. Lyne A.G., Burgay M., Kramer M., et al. (2004). A Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics. Science, 1153–1157. https://doi.org/10.1126/science.1094645
  47. Meier D.L. (1999). Grand Unification of AGN and the Accretion and Spin Paradigms. New Astronomy Reviews, 247–255. (Astro-ph/9908283). https://doi.org/10.1016/s1387-6473(01)00189-0
  48. Novikov I.D., Thorne K.S. (1973). Astrophysics of black holes. In “Black holes (Les astres occlus)”, ed. C.DeWitt and B.S.DeWitt. – New York: Gordon and Breach, 1973., 343–450.
  49. Oshima T., Mitsuda K., Ota N., et al. (2001). ASCA observation of the lensed blazar PKS 1830-211: an implication of X-ray microlensing. Ap. J., 551, 929–933. https://doi.org/10.1086/320246
  50. Perera B.B.P., McLaughlin M.A., Kramer M., et al. (2010). The Evolution of PSR J0737-3039 B and A: Model for Relativistic Spin Precession. Ap. J., 721, 1193–1205. https://doi.org/10.1088/0004-637x/721/2/1193
  51. Ade P.A.R., Aghanim N., Armitage-Caplan C., et al. (2013). Planck 2013 results. XVI. Cosmological parameters. ArXiv:1303.5076 (2013). .
  52. Popovic L.C., Mediavilla E.G., Jovanović P., Munoz J.A. (2003). The influence of microlensing on the shape of the AGN Fe Kα line. Astron. Astrophys., 398, 975–982. https://doi.org/10.1051/0004-6361:20021712
  53. Popovic L. C., Jovanović P., Mediavilla E., et al. (2006). A study of the correlation between the amplification of the Fe K-α line and the X-ray continuum of quasars due to microlensing. Ap. J., 637, 620–630. https://doi.org/10.1086/498558
  54. Sahni V., Wang L. (2000). New cosmological model of quintessence and dark matter. Phys. Rev. D.. https://doi.org/10.1103/physrevd.62.103517
  55. Sahni V., Starobinsky A. (2000). The Case for a Positive Cosmological Λ-Term. Int. J. Mod. Phys. D., 373–443. https://doi.org/10.1142/s0218271800000542
  56. Sahni V. (2004). Dark Matter and Dark Energy. Lect. Notes Phys., 653, 141–180.
  57. Schneider P., Ehlers J., Falco E.E. Gravitational Lenses. Berlin: Springer, 1992.
  58. Soldi S., Beckmann V., Gehrels N., De Jong S., Lubiński P. (2011). High-energy emission from NGC 5506, the brightest hard X-ray Narrow Line Seyfert 1 galaxy. In: Narrow-Line Seyfert 1 Galaxies and their place in the Universe. Proc. of Science.. https://doi.org/10.22323/1.126.0063
  59. Soldi S., Ponti G., Beckmann V., Lubiński P. (2009). AGN variability at hard X-rays. In: The Extreme sky: Sampling the Universe above 10 keV. Proc. of Science.. https://doi.org/10.22323/1.096.0031
  60. Ureña-López L.A., Matos T. (2000). New cosmological tracker solution for quintessence. Phys. Rev. D.. https://doi.org/10.1103/physrevd.62.081302
  61. Will C.M. (2010). The confrontation between General Relativity and Experiment. In: Ciufolini I., Matzner R. (Eds). General Relativity and John Archibald Wheeler. – Springer, 2010., 73–93.
  62. Wilson A.S., Colbert E.J.M. (1995). The difference between radio-loud and radio-quiet active galaxies. Ap.J., 438, 62–71. https://doi.org/10.1086/175054
  63. Zhdanov V.I., Alexandrov A.N., Fedorova E.V., Sliusar V.M. (2012). Analytical Methods in Gravitational Microlensing. ISRN Astron. Astrophys.. https://doi.org/10.5402/2012/906951
  64. Zhdanov V.I., Ivashchenko G. (2009). Cosmological scalar fields that mimic the ΛCDM cosmological model. Kinematics and Phys. of Celestial Bodies., 25, 73–78. (ArXiv:0806.4327). https://doi.org/10.3103/s0884591309020020
  65. Zloshchastiev K.G. (2005). Coexistence of black holes and a long-range scalar field in cosmology. Phys. Rev. Lett.. https://doi.org/10.1103/physrevlett.94.121101

Download PDF