Astronomical School’s Report, 2013, Volume 9, Issue 1, Pages 20–27
UDC 519.2 (075.8)
Cosmological and astrophysical challenges of General Relativity
Zhdanov V.I., Fedorova E.V., Alexandrov A.N., Slyusar V.M.
Astronomical Observatory, Kyiv Shevchenko National University, Ukraine
Abstract
We review experimental confirmations of the General Relativity theory (GRT) and discuss problems concerning applications of GRT in strong gravitational fields. The tests of GRT in the Solar system and in the double star systems containing pulsars are analysed. We formulate some problems that arise in theoretical considerations of compact astrophysical objects in presence of the scalar fields. We argue that, in the near future, the observations of X-ray spectra form active galactic nuclei will enable us to rule out at least part of these models with the scalar fields.
Keywords: gravitation; relativity theory; scalar fields; black holes
References
- Aleksandrov A. N., Zhdanov V.I., Fedorova E.V. (2010). Asimptoticheskie formuly dlya koeffitsienta usileniya gravitatsionno-linzovoy sistemy vblizi kaustiki-skladki. Pis’ma v AZH, 36, 344–352.
- Bronnikov K.A., Rubin S.G. (2008). Lektsii po gravitatsii i kosmologii. M.: MIFI. 460 p.
- Zakharov A.F. (1997). Gravitatsionnye linzy i mikrolinzy. M.: Yanus-K. 328 p.
- Linde A.D. (1990). Fizika elementarnykh chastits i inflyatsionnaya kosmologiya. M.: Nauka. 280 p.
- Minakov A.A., Vakulik V.G. (2010). Statistichesky analiz gravitatsionnogo mikrolinzirovaniya. K.: Naukova Dumka. 261 p.
- Novikov I.D., Kardashov N.S., Shatsky A.A. (2007). Mnogokomponentnaya Vselennaya i astrofizika krotovykh nor. UFN, 177, 1017–1023. https://doi.org/10.3367/ufnr.0177.200709g.1017
- Pit’eva E.V. (2005). Relyativistskie effekty i szhatie Solntsa iz radarnykh nablyudeny planet i kosmicheskikh apparatov. Pis’ma v Astron. zhurn., 31, 340–349.
- Solov’ev D.A., Tsirulev A.N. (2010). Ustoychivye krugovye orbity vblizi gravitiruyuschikh skalyarnykh konfiguratsy. Vestnik TvGU. Ser.: Prikl. mat., 19, 29–41.
- Uill K. (1985). Teoriya i eksperiment v gravitatsionnoy fizike. M.: Energoatomizdat. 296 p.
- Fisher I.Z. (1948). Pole skalyarnogo mezona s uchetom gravitatsionnykh effektov. ZHETF, 18, 636–640.
- Yatskiv Ya.S., Aleksandrov O.M., Vavylova I.B., ta in. (2005). Zahal’na teoriya vidnosnosti: vyprobuvannia chasom. K.: Akademperiodyka. 288 p.
- Alexandrov A.N., Zhdanov V.I. (2011). Asymptotic expansions and amplification of a gravitational lens near a fold caustic. MNRAS, 417, 541–554. https://doi.org/10.1111/j.1365-2966.2011.19296.x
- Antonucci R., Miller J. (1985). Spectropolarimetry and the nature of NGC 1068. Ap. J., 297, 621–623. https://doi.org/10.1086/163559
- Bekenstein J.D. (1972). Transcendence of the Law of Baryon-Number Conservation in Black-Hole. Physics. Phys. Rev. Letters., 28, 452–455. https://doi.org/10.1103/physrevlett.28.452
- Bekenstein J.D. (1972). Nonexistence of Baryon Number for Static Black Holes. Phys. Rev. D., 5, 1239–1246; 2403–2412. https://doi.org/10.1103/physrevd.5.1239
- Berti E., Cardoso V., Gualtieri L., Horbatsch M., Sperhake U. (2013). Numerical simulations of single and binary black holes in scalar-tensor theories: Circumventing the no-hair theorem. Physical Review D. https://doi.org/10.1103/physrevd.87.124020
- Blandford R., Znajek R. (1977). Electromagnetic extraction of energy from Kerr black holes. MNRAS, 179, 433–456. https://doi.org/10.1093/mnras/179.3.433
- Blandford R.D. (1999). Relativistic accretion. In: Astrophysical Disks. Proc. ASP Conf. Ser. (Ed. J.A.Sellwood and J.J.Goodman.), 160, 265-278.
- Breton R.P., Kaspi V.M., Kramer M., et al. (2008). Relativistic Spin Precession in the Double Pulsar. Science, 104–107. https://doi.org/10.1126/science.1159295
- Burgay M., D'Amico N., Possenti A., et al. (2003). An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature, 426, 531–533. https://doi.org/10.1038/nature02124
- Chartas G., Agol E., Eracleous M., et al. (2002). Caught in the act: Chandra observations of microlensing of the radio-loud quasar MG J0414+0534. Ap. J., 568, 509–521. https://doi.org/10.1086/339162
- Chartas G., Eracleous M., Agol E., Gallagher S.C. (2004). Chandra observations of the Cloverleaf quasar H1413+117: A unique laboratory for microlensing studies of a LoBAL quasar. Ap.J., 606, 78–84. https://doi.org/10.1086/382743
- Chartas G., Kochanek C.S., Dai X., et al. (2012). Revealing the structure of an accretion disk through energy dependent X-ray microlensing. Ap. J., 12. https://doi.org/10.1088/0004-637x/757/2/137
- Chase J.E. (1970). Event horizons in static scalar-vacuum space-times. Comm. Math. Phys., 19, 276–288. https://doi.org/10.1007/bf01646635
- Chowdhury A.N., Patil M., Malafarina D., Joshi P.S. (2012). Circular geodesics and accretion disks in the Janis–Newman–Winicour and gamma metric spacetimes. Phys. Rev. D.. https://doi.org/10.1103/physrevd.85.104031
- Chruściel P.T., Costa J.L., Heusler M. (2012). Stationary Black Holes: Uniqueness and Beyond. Living Rev. Relativity., 15, 7–73. (http://www.livingreviews.org/lrr-2012-7). https://doi.org/10.12942/lrr-2012-7
- Dai X., Chartas G., Agol E., Bautz M.W., Garmire G.P. (2003). Chandra observations of QSO 2237+0305. Ap. J., 589, 100–110. https://doi.org/10.1086/374548
- De Rosa A., Bassani L., Ubertini P., et al. (2008). An X-ray view of absorbed INTEGRAL AGN. Astron. Astrophys., 483, 749–758. https://doi.org/10.1051/0004-6361:20078319
- Fabian A.C., Miniutti G. (2009). The X-ray spectra of accreting Kerr black holes. In: “Kerr Spacetime: Rotating Black Holes in General Relativity”, Eds. D.L.Wiltshire, M.Visser and S.M.Scott. – Cambridge Univ. Press, 2009. – 377 p. (astro-ph/0507409). .
- Fedorova E., Beckmann V., Neronov A., Soldi S. (2011). Studying the long-time variability of the Seyfert 2 galaxy NGC 4388 with INTEGRAL and Swift. MNRAS, 417, 1140–1147. https://doi.org/10.1111/j.1365-2966.2011.19335.x
- Fedorova E.V., Zhdanov V.I., Vignali C., Palumbo G.G.C. (2008). Q2237+0305 in X-rays: spectra and variability with XMM-Newton. Astron. Astrophys., 490, 989–994. https://doi.org/10.1051/0004-6361:20078730
- Ghez A.M., Salim S., Weinberg N.N., et al. (2008). Measurement distance and properties of the Milky way's sentral supermassive black hole with stellar orbits. Ap. J., 689, 1044–1062. https://doi.org/10.1086/592738
- Grieger B., Kayser R., Refsdal S. (1988). Gravitational micro-lensing as a clue to quasar structure. Astron. Astrophys., 194, 54–64.
- Harada T., Iguchi H., Nakao K. (2002). Physical Processes in Naked Singularity Formation. Prog. Theor. Phys., 107, 449–524. https://doi.org/10.1143/ptp.107.449
- Hohensee M.A., Leefer N., Budker D., et al. (2013). Limits on violations of Lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium. ArXiv:1303.2747 (2013). . https://doi.org/10.1103/physrevlett.111.050401
- Horbatsch M.W., Burgess C.P. (2012). Cosmic black-hole hair growth and quasar OJ287. JCAP, 20. (ArXiv:1111.4009). https://doi.org/10.1088/1475-7516/2012/05/010
- Hulse R.A., Taylor J.H. (1975). Discovery of a pulsar in a binary system. Astrophys. J. Lett., 195, L51-L53. https://doi.org/10.1086/181708
- Jacobson T. (1999). Primordial Black Hole Evolution in Tensor-Scalar Cosmology. Phys. Rev. Lett., 83, 2699–2702. (Astro-ph/9905303). https://doi.org/10.1103/physrevlett.83.2699
- Janis A.I., Newman E.T., Winicour J. (1968). Reality of the Schwarzschild Singularity. Phys. Rev. Lett., 20, 878–880. https://doi.org/10.1103/physrevlett.20.878
- Jovanović R. (2012). The broad Fe Kα line and supermassive black holes. New Astronomy Reviews, 37–48. https://doi.org/10.1016/j.newar.2011.11.002
- Kardashev N.S., Novikov I.D., Shatskiy A.A. (2007). Astrophysics of Wormholes. Int. Journ. Modern Phys. D., 16, 909–926. (Astro-ph/0610441v2). https://doi.org/10.1142/s0218271807010481
- Kramer M. (2013). Probing gravitation with pulsars. Proc. Int. Astron. Union., 291, 19–26.
- Kramer M., Stairs I.H., Manchester R.N., et al. (2006). Tests of General Relativity from Timing the Double Pulsar. Science, 97–102. https://doi.org/10.1126/science.1132305
- Laor A. (1991). Line profiles from a disk around a rotating black hole. Astrophysical Journal, 376, 90–94. https://doi.org/10.1086/170257
- Longair M.S. (2011). High Energy Astrophysics. Cambridge University Press. 861 p.
- Lyne A.G., Burgay M., Kramer M., et al. (2004). A Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics. Science, 1153–1157. https://doi.org/10.1126/science.1094645
- Meier D.L. (1999). Grand Unification of AGN and the Accretion and Spin Paradigms. New Astronomy Reviews, 247–255. (Astro-ph/9908283). https://doi.org/10.1016/s1387-6473(01)00189-0
- Novikov I.D., Thorne K.S. (1973). Astrophysics of black holes. In “Black holes (Les astres occlus)”, ed. C.DeWitt and B.S.DeWitt. – New York: Gordon and Breach, 1973., 343–450.
- Oshima T., Mitsuda K., Ota N., et al. (2001). ASCA observation of the lensed blazar PKS 1830-211: an implication of X-ray microlensing. Ap. J., 551, 929–933. https://doi.org/10.1086/320246
- Perera B.B.P., McLaughlin M.A., Kramer M., et al. (2010). The Evolution of PSR J0737-3039 B and A: Model for Relativistic Spin Precession. Ap. J., 721, 1193–1205. https://doi.org/10.1088/0004-637x/721/2/1193
- Ade P.A.R., Aghanim N., Armitage-Caplan C., et al. (2013). Planck 2013 results. XVI. Cosmological parameters. ArXiv:1303.5076 (2013). .
- Popovic L.C., Mediavilla E.G., Jovanović P., Munoz J.A. (2003). The influence of microlensing on the shape of the AGN Fe Kα line. Astron. Astrophys., 398, 975–982. https://doi.org/10.1051/0004-6361:20021712
- Popovic L. C., Jovanović P., Mediavilla E., et al. (2006). A study of the correlation between the amplification of the Fe K-α line and the X-ray continuum of quasars due to microlensing. Ap. J., 637, 620–630. https://doi.org/10.1086/498558
- Sahni V., Wang L. (2000). New cosmological model of quintessence and dark matter. Phys. Rev. D.. https://doi.org/10.1103/physrevd.62.103517
- Sahni V., Starobinsky A. (2000). The Case for a Positive Cosmological Λ-Term. Int. J. Mod. Phys. D., 373–443. https://doi.org/10.1142/s0218271800000542
- Sahni V. (2004). Dark Matter and Dark Energy. Lect. Notes Phys., 653, 141–180.
- Schneider P., Ehlers J., Falco E.E. Gravitational Lenses. Berlin: Springer, 1992.
- Soldi S., Beckmann V., Gehrels N., De Jong S., Lubiński P. (2011). High-energy emission from NGC 5506, the brightest hard X-ray Narrow Line Seyfert 1 galaxy. In: Narrow-Line Seyfert 1 Galaxies and their place in the Universe. Proc. of Science.. https://doi.org/10.22323/1.126.0063
- Soldi S., Ponti G., Beckmann V., Lubiński P. (2009). AGN variability at hard X-rays. In: The Extreme sky: Sampling the Universe above 10 keV. Proc. of Science.. https://doi.org/10.22323/1.096.0031
- Ureña-López L.A., Matos T. (2000). New cosmological tracker solution for quintessence. Phys. Rev. D.. https://doi.org/10.1103/physrevd.62.081302
- Will C.M. (2010). The confrontation between General Relativity and Experiment. In: Ciufolini I., Matzner R. (Eds). General Relativity and John Archibald Wheeler. – Springer, 2010., 73–93.
- Wilson A.S., Colbert E.J.M. (1995). The difference between radio-loud and radio-quiet active galaxies. Ap.J., 438, 62–71. https://doi.org/10.1086/175054
- Zhdanov V.I., Alexandrov A.N., Fedorova E.V., Sliusar V.M. (2012). Analytical Methods in Gravitational Microlensing. ISRN Astron. Astrophys.. https://doi.org/10.5402/2012/906951
- Zhdanov V.I., Ivashchenko G. (2009). Cosmological scalar fields that mimic the ΛCDM cosmological model. Kinematics and Phys. of Celestial Bodies., 25, 73–78. (ArXiv:0806.4327). https://doi.org/10.3103/s0884591309020020
- Zloshchastiev K.G. (2005). Coexistence of black holes and a long-range scalar field in cosmology. Phys. Rev. Lett.. https://doi.org/10.1103/physrevlett.94.121101
Download PDF