Astronomical School’s Report, 2013, Volume 9, Issue 1, Pages 37–42

https://doi.org/10.18372/2411-6602.09.1037
Download PDF
UDC 551.510

Application of UARS satellite measurements for investigation of wind variations in the upper atmosphere

Pilipenko S.G.

Kyiv Shevchenko National University, Ukraine

Abstract

In this work we investigated the change of dynamics of the upper atmosphere over hurricanes. We studied characteristics of the horizontal component of the wind speed within 80–300 km range of altitudes. We analyzed data obtained in 1994 by WINDI (Wind Imaging Interferometer) onboard UARS satellite for hurricane intensities of 4 and 5 points by Saffir–Simpson scale [9]. We plotted the distributions of the zonal and meridional velocity components on height. We found an increase of wind dynamics over strong tropospheric perturbations for altitudes up to 108 km. Acoustic-gravity waves (AGW) may be responsible for propagation of perturbations from the troposphere up, therefore we made a numerical modeling of fluctuations of the vertical and horizontal velocity components when AGW are present in the atmosphere. Moreover, we studied changes of the velocity components due to variation of wave period and horizontal wave number and considered spatial scales of such changes as well.

Keywords: atmospheric gravity wave; mesosphere; hurricane

References

  1. Kazimirovsky E.S., Kokourov V.D. (1979). Dvizheniya v ionosfere. Novosibirsk: Nauka. 344 p.
  2. Liperovsky V.A., Pokhotelov O.A., Shalimov S.L. (1992). Ionosfernye predvestniki zemletryaseny. M.: Nauka. 340 p.
  3. Pertsev N.N., Shalimov S.L. (1996). Generatsiya atmosfernykh gravitatsionnykh voln v seysmicheski aktivnom regione i ikh vliyanie na ionosferu. Geomagnetizm i aeronomiya, 36(2), 111–118.
  4. Pylypenko S.H., Kozak L.V. (2010). Analiz poshyrennia ta zatukhannia atmosfernykh hravitatsiynykh khvyl’. Kosmichna nauka i tekhnolohiya, 16(4), 22–29. https://doi.org/10.15407/knit2010.04.022
  5. Protyagin Yu. I., Shprenger K. Izmerenie vetra na vysotakh 90–100 km nazemnymi metodami. L.: Gidrometeoizdat, 1978, S.159–167.
  6. Dzubenko M.I., Kozak L.V. (2000). Aurora activity depresion after near seismic shocks. Proceedings of International Symposium: From solar corona through interplanetary space, into Earth's magnetosphere and groundbased observations. – Febr. 1–4, 2000. – Kyiv, Ukraine., 129–131.
  7. Fleming E.L., Chandra S., Barnett J.J., Corney M. (1990). Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude. Adv. Space Res., 10, 1211–1259. https://doi.org/10.1016/0273-1177(90)90386-e
  8. Hedin A.E. (1991). Extension of the MSIS Thermospheric Model into the Middle and Lower Atmosphere. J. Geophys. Res., 96, 1159–1172. https://doi.org/10.1029/90ja02125
  9. Longshore D. (2008). Encyclopedia of Hurricanes, Typhoons, and Cyclones. New York: Facts on File, Inc.. 468 p.
  10. Reber C.A., Trevathan C.E., McNeal R.J., Luther M.R. (1993). The Upper Atmosphere Research Satellite (UARS) Mission. J. Geophys. Res., 10643–10647. https://doi.org/10.1029/92jd02828
  11. Shepherd G., et al. (1993). WINDII – The Wind Imaging Interferometer on the Upper Atmosphere Reseasrch Satellite. J. Geophys. Res., 98, 10725–10750.
  12. Baza danykh urahaniv [Elektronniy resurs], http://weather.unisys.com/hurricane/

Download PDF