Astronomical School’s Report, 2013, Volume 9, Issue 1, Pages 28–36

https://doi.org/10.18372/2411-6602.09.1028
Download PDF
UDC 523.98

The role of the negative helical turbulent viscosity in the fragmentations of the magnetic fields on the Sun

Krivodubskij V.N.

Astronomical Observatory, Kyiv Shevchenko National University, Ukraine

Abstract

The review of researches of displays of negative turbulent viscosity effect in the meteorological, geophysical and astrophysical phenomena is done. Underline, that spiral (helical) motions in rotating convective turbulence promote an inversion energy cascade from small-scale to the large-scale pulsations, what results in the effect of negative turbulent viscosity. Our calculations based on turbulent parameters for two solar convection zone (SCZ) models showed that favourable conditions for helical negative turbulent viscosity existence are created in deep layers. The possible role of the helical negative turbulent viscosity in formation of the discrete magnetic force flux tubes near bottom of the SCZ is discussed.

Keywords: negative turbulent viscosity; helical motions; convection zone; magnetic force flux tubes

References

  1. Avramenko A.A., Basok B.I., Tyrnov A.I., Kuznetsov A.V. (2007). Effekt otritsatel’noy turbulentnoy vyazkosti. Promyshlennaya teplotekhnika. – Kiev: Logos., 2007(1), 12–14.
  2. Braginsky S.I. (1964). Teoriya gidromagnitnogo dinamo. ZHETF, 47(12), 2178–2193.
  3. Vaynshteyn S.I., Zel’dovich Ya.B., Ruzmaykin A.A. (1980). Turbulentnoe dinamo v astrofizike. M.: Nauka. 352 p.
  4. Gor’kavyy N.N., Fridman A.M. (1990). Fizika planetnykh kolets. UFN, 160(2), 170–237.
  5. Grigor’ev V.M., Pescherov V.S., Osak B.V. (1983). Izmerenie fonovogo magnitnogo polya Solntsa v Sayanskoy solnechnoy observatorii. V sb.: Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa. – M.: Nauka, 1983. – Vyp. 64., 80–95.
  6. Gurevich L.E., Lebedinsky A.I. (1945). Magnitnoe pole solnechnykh pyaten. DAN SSSR, 49, 92–94.
  7. Zel’dovich Ya.B. (1956). Magnitnoe pole pri dvumernom dvizhenii provodyaschey zhidkosti. ZHETF, 31, 154–156.
  8. Kolesnichenko A.V., Marov M.Ya. (2008). Rol’ gidrodinamicheskoy spiral’nosti v evolyutsii protoplanetnogo turbulentnogo oblaka. Matematicheskoe modelirovanie, 20(10), 99–125.
  9. Kotov V.A., Khaneychuk V.I., Tsap T.T. (2002). K izmereniyam magnitnogo razbalansa Solntsa. Kinemat. i fiz. nebesnykh tel., 18(3), 205–216.
  10. Lebedinsky A.I. (1941). Vraschenie Solntsa. Astron. zhurnal., 18(1), 10–25.
  11. Moiseev S.S., Sagdeev R.Z., Tur A.V. i dr. (1983). Teoriya vozniknoveniya krupnomasshtabnykh struktur v gidrodinamicheskoy turbulentnosti. ZHETF, 1979–1987.
  12. Moiseev S.S., Rutkevich P.B., Tur A.V., Yanovsky V.V. (1988). Vikhrevoe dinamo v konvektivnoy srede so spiral’noy turbulentnost’yu. ZHETF, 144–153.
  13. Prist E.R. (1985). Solnechnaya elektrodinamika. M.: Mir. 592 p.
  14. Severnyy A.B. (1966). Issledovaniya obschego magnitnogo polya Solntsa. Izv. Krym. astrofiz. obs., 35, 97–138.
  15. Frenkel’ Ya.I. (1945). O proiskhozhdenii zemnogo magnetizma. DAN SSSR, 49, 98–101.
  16. Avramenko A.A., Basok B.I. (2006). Vortex effect as a consequence of negative turbulent diffusivity and viscosity. Journal of Engineering Physics and Thermophysics, 12(5), 957–962. https://doi.org/10.1007/s10891-006-0191-1
  17. Batchelor G.K. The Theory of Homogeneous Turbulence. Cambridge: Cambridge University Press, 1953.
  18. Beckers J.M., Schröter E.H. (1968). The intensity, velocity and magnetic structure of a sunspot region. I. Observational technique: properties of magnetic knots. Solar Phys, 4, 142–164. https://doi.org/10.1007/bf00148076
  19. Biermann L. (1951). Bemerkungen uber das Rotationsgesetz in irdischen und stellaren Instabilitatszonen. Zeits. Astrophys..
  20. Branover H., Moiseev S.S., Golbraikh E., Eidelman A. (1999). Turbulence and Structures: Chaos, Fluctuationd, and Helical Self-Organization in Nature and Laboratory. – San Diego: Acad Press, 1999. – 270 p. .
  21. Brissaund A., Frish U., Leorat J., Lessieur M., Mazure A. (1973). Helical cascade in fully developed turbulence. Phys. Fluids.. https://doi.org/10.1063/1.1694520
  22. Bumba V., Howard R. (1965). Large-scale distribution of solar magnetic fields. Astrophys. J., 141(4), 1502–1512. https://doi.org/10.1086/148238
  23. Csada I.K. (1951). On the magnetic effect of turbulence in ionized gases. Acta Phys. Hung., 1, 215–230.
  24. Childress S. (1979). Alpha-effect in flux ropes and sheets. Physics Earth & Planet. Inter., 20, 172–180. https://doi.org/10.1016/0031-9201(79)90039-6
  25. Duvall T.L., Wilcox J.M., Svalgaard L., et al. (1977). Comparison of Ha synoptic charts with the large-scale solar magnetic field as observed at Stanford. Solar Phys, 55(1), 63–68. https://doi.org/10.1007/bf00150874
  26. Haken H. (1977). Synergetics: an introduction. Berlin–Heidelberg–New York: Sringer-Verglag. 325 p.
  27. Haken H. (1983). Advanced Synergetics. Berlin–Heidelberg–New York–Tokyo: Sringer-Verglag. 356 p.
  28. Haken H. (1988). Information and Self-Organization: a macroscopic approach to complex systems. – Berlin – Heidelberg – New York – London – Paris – Tokyo: Springer-Verglag. 196 p.
  29. Getling A.V. (2001). Convective mechanism for the formation of photospheric magnetic fields. Astronomy Reports, 45, 569–576. https://doi.org/10.1134/1.1383816
  30. Getling A.V. (2012). The helicity of the velocity field for cellular convection in a rotating layer. Astronomy Reports, 56, 395–402. https://doi.org/10.1134/s1063772912040038
  31. Getling A.V., Buchnev A.A. (2010). Some structural features of the convective-velocity field in the solar photosphere. Astronomy Reports, 54, 254–259. https://doi.org/10.1134/s1063772910030078
  32. Gilman P.A. (1977). Nonlinear dynamics of boussinesq convection in a deep rotating spherical shell. I. Geophys. Astrophys. Fluid Dynamics., 8, 93–135. https://doi.org/10.1080/03091927708240373
  33. Gibson E.G. The Quiet Sun. Washington: Scientific and Technical Information Office, NASA, 1973.
  34. Ebeling W., Klimontovich Yu.L. Selforganization and Turbulence. Leipzig: Teubner-Verglag, 1984.
  35. Elsasser W.M. (1956). Hydromagnetic dynamo theory. Rev. Mod. Phys., 28, 135–163. https://doi.org/10.1103/revmodphys.28.135
  36. Fischer C.E., de Wijn A.G., Centeno R., Lites B.W., Keller C.U. (2009). Statistics of convective collapse invents in the photosphere and chromosphere observed with the Hinode SOT. Astron. Astrophys., 504, 583–588. https://doi.org/10.1051/0004-6361/200912445
  37. Frisch U., Pouquet A., Leorat I., Mazure A. (1975). Possibility of an inverse cascade of magnetichelicity in magnetohydrodynamic turbulence. Journ. Fluid Mech., 68, 769–778. https://doi.org/10.1017/s002211207500122x
  38. Kerr B.W., Darkow G.L. (1996). Storm-relative winds and helicity in the tornadic thunderstorm environment. Weath. and Forecast., 11, 489–496. https://doi.org/10.1175/1520-0434(1996)011<0489:srwahi>2.0.co;2
  39. Kolesnichenko A.V. (2002). A synergetic approach to the description of advanced turbulence. Solar System Research, 36, 107–124.
  40. Kolesnichenko A.V., Marov M.Ya. (2007). The effect of spirality of turbulence in the solar protoplanetary cloud. Solar System Research, 41, 1–18. https://doi.org/10.1134/s0038094607010017
  41. Kolesnichenko A.V., Marov M.Ya. (2009). Magnetohydrodynamic simulation of the protoplanetary disk of the Sun. Solar System Research, 43, 410–433. https://doi.org/10.1134/s0038094609050049
  42. Kolesnichenko A.V. (2011). On the simulations of helical turbulence in an astrophysical nonmagnetic disk. Solar System Research, 45, 246–263. https://doi.org/10.1134/s0038094611030026
  43. Kraichnan R.H. (1973). Helical turbulence and absolute equilibrium. J. Fluid Mech., 59, 745–752. https://doi.org/10.1017/s0022112073001837
  44. Kraichnan R.H. (1976). Diffusion of weak magnetic fields by isotropic turbulence. J. Fluid Mech., 75, 657–676. https://doi.org/10.1017/s002211207600044x
  45. Kraichnan R.H. (1976). Diffusion of passive-scalar and magnetic fields by helical turbulence. J. Fluid Mech., 77, 753–774. https://doi.org/10.1017/s0022112076002875
  46. Kraichnan R.H. (1976). Eddy viscosity in two and three dimensions. J. Atmos. Sci., 33, 1521–1536. https://doi.org/10.1175/1520-0469(1976)033<1521:evitat>2.0.co;2
  47. Krause F., Rädler K.-H. Mean-Field Magnetohydrodynamics and Dynamo Theory. Berlin: Academie-Verlag, 1980. (Moscow: Mir, 1984 [in Russian]).
  48. Krause F., Rüdiger G. (1974). On the Reynolds stress in mean-field hydrodynamics. II. Two-dimensional turbulence and the problem of negative viscosity. Astron. Nachrichten., 295(4), 185–193. https://doi.org/10.1002/asna.19742950404
  49. Krivodubskij V.N. (1998). Rotational anisotropy and magnetic quenching of gyrotropic turbulence in the solar convective zone. Astronomy Reports, 42, 122–126.
  50. Krivodubskij V.N. (2001). The structure of the global solar magnetic field excited by the turbulent dynamo mechanism. Astronomy Reports, 45, 738–745. https://doi.org/10.1134/1.1398923
  51. Krivodubskij V.N. (2005). Turbulent dynamo near tachocline and reconstruction of azimuthal magnetic field in the solar convection zone. Astron. Nachrichten., 326(1), 61–74. https://doi.org/10.1002/asna.200310340
  52. Krivodubskij V.N. (2012). Turbulent effects of sunspot magnetic field reconstruction. Kinematics and Physics of Celestial Bodies, 28(5), 232–238. https://doi.org/10.3103/s0884591312050054
  53. Lehnert B. (1955). The decay of magnetic fields in the presence of a magnetic field and Coriolis force. Qu. J. Appl. Math., 12, 321–341. https://doi.org/10.1090/qam/67648
  54. Levina G.V., Moiseev S.S. (1998). Negative turbulent heat conduction and its role in the formation of large-scale structures. Technical Physics Letters, 24(4), 315–318. https://doi.org/10.1134/1.1262096
  55. Lorenz E.N. (1953). The interaction between a mean flow and random disturbances. Tellus, 5, 238. https://doi.org/10.3402/tellusa.v5i3.8645
  56. Mininni P.D., Alexakis A., Pouquet A. (2009). Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers. Phys. Fluids., 21, 015108. https://doi.org/10.1063/1.3064122
  57. Mininni P.D., Pouquet A. (2009). Helicity cascades in rotating turbulence. Phys. Rev., 026304. https://doi.org/10.1103/physreve.79.026304
  58. Mininni P.D., Pouquet A. (2009). Rotating helical turbulence. Pt.I. Global evolution and spectral behaviour. Phys. Rev. E., 1–9. https://doi.org/10.1063/1.3358466
  59. Mininni P.D., Pouquet A. (2009). Helical rotating turbulence. Pt.II. Intermittency, scale invariance and structures. Phys. Rev. E., 1–11. https://doi.org/10.1063/1.3358471
  60. Moffatt H.K. (1969). The degree of knottedness of tangled vortex lines. J. Fluid Mech., 35, 117–129. https://doi.org/10.1017/s0022112069000991
  61. Moffatt H.K.J. (1974). The mean electromotive force generated by turbulence in the limit of prefect conductivity. J. Fluid Mech., 65, 1–10. https://doi.org/10.1017/s0022112074001200
  62. Moiseev S.S., Chkhetiani O.G. (1996). The helical scaling of turbulence. JETF, 110(7), 357–371.
  63. Monin A.S. (1959). Turbulence in shear flow with stability. Journal of Geophysical Research, 64, 2224–2225. https://doi.org/10.1029/jz064i012p02224
  64. Nagata S., Tsuneta S., Suematsu Y., et al. (2008). Formation of solar magnetic flux tubes with kilogauss field strength ionduced by convective instability. Astrophys. J., 667, L145-L147. https://doi.org/10.1086/588026
  65. November L.J., Toomre J., Gebbie K.V., Simon G.W. (1981). The detection of mesogranulation on the Sun. Astrophys. J., 245L, L123-L126. https://doi.org/10.1086/183539
  66. November L.J. (1986). Measurement of geometric distortion in a turbulent atmosphere. Applied Optics, 25, 392–397. https://doi.org/10.1364/ao.25.000392
  67. Parker E.N. (1955). Hydromagnetic dynamo models. Astrophys. Journ., 122, 293–314.
  68. Parker E.N. (1978). Hydraulic consentration of magnetic fields in the solar photosphere. VI. Adiabatic cooling and concentration in downdrafts. Astrophys. J., 221, 368–377. https://doi.org/10.1086/156035
  69. Parker E.N. Cosmic Magnetic Fields. Oxford: Oxford University Press, 1979. (Moscow: Mir, 1982 [in Russian]).
  70. Pouquet F., Frisch U., Leorat J. (1976). Strong MHD turbulence and the nonlinear dynamo effect. Journ. Fluid Mech., 77, 321–354. https://doi.org/10.1017/s0022112076002140
  71. Prigogine I., Nicolis G. Self-Organization in Non-Equilibrium Systems. Wiley, 1977.
  72. Prigogine I., Stengers I. Order out of Chaos. Toronto–New York–London–Sydney: Bantam Books, 1984.
  73. Rädler K.-H. (1966). Zur Elektrodynamik turbulent bewegterm leitender Mediem. Thesis.
  74. Rädler K.-H. (1968). Zur Elektrodynamik turbulent bewegterm leitender Mediem. Zeits. Naturforsch. I..
  75. Rüdiger G. (1974). The influence of a uniform magnetic field of arbitrary strength on turbulence. Astron. Nachrichten., 295(6), 275–283. https://doi.org/10.1002/asna.19742950605
  76. Rudiger G. (1974). On the Reynolds Stresses in Mean Field Hydrodynamics. III. Two-Dimensional Turbulence and the Problem of Differential Rotation. Astron. Nachrichten., 295(5), 229–235. https://doi.org/10.1002/asna.19742950506
  77. Rüdiger G. (1980). On the negative viscosity in MHD turbulence. Magnetic Hydrodynamics (Riga), 1980(1), 3–14.
  78. Rüdiger G. (1989). Differential Rotation and Stellar Convection of the Sun and Solar-Type Stars. Berlin: Academie-Verlag. 328 p.
  79. Rüdiger G., Arlt R. (2002). Physics of solar cycle. In: Advances in nonlinear dynamos / The Fluid Mechanics of Astrophysics and Geophysics, 9, 147–191. https://doi.org/10.1201/9780203493137.ch6
  80. Simon G.W., Leighton R.B. (1964). Velocity fields in the solar atmosphere. III. Large-scale motions, the chromospheric network, and magnetic fields. Astrophys. J., 140, 1120–1147. https://doi.org/10.1086/148010
  81. Simon G.W., Brandt P.N., November L.J., Scharmer G.B., Shine R.A. (1994). Large-scale photospheric motions: first results from an extraordinary eleven-hour granulation observation. In: Solar Surface Magnetism, eds R.J.Rutten, C.J.Schrijver. – Science Institute, Advanced Science Institute Series C: Mathematical and Physical Sciences. – V.433 (Dordrecht: Kluver, 1994)., 261. https://doi.org/10.1007/978-94-011-1188-1_23
  82. Smith L.M., Waleffe F. (1999). Transfer of energe to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids., 11, 1608–1622. https://doi.org/10.1063/1.870022
  83. Spruit H. A convection zone model Magnetic flux tubes and transport of heat in the convection zone of the Sun. Thesis, Utrecht: Univ. Utrecht, 1977, P.17–34.
  84. Spruit H.C. (1979). Convective collapse of flux tubes. Solar Phys, 61, 363–378. https://doi.org/10.1007/bf00150420
  85. Spruit H.C., Zweibel E.G. (1979). Convective instability of thin flux tubes. Solar Phys, 62, 15–22. https://doi.org/10.1007/bf00150128
  86. Starr V.P. Physics of Negative Viscosity Phenomena. Toronto–London–Sydney: McGraw-Hill Book Company, 1968.
  87. Starr V.P., Gaut N.E., Copeland J.A. (1967). Angular momentum transport in the solar nebula. Pure and Applied Geophysics PAGEOPH, 221–232. https://doi.org/10.1007/bf00880580
  88. Steenbeck M., Krause F., Rädler K.-H. (1966). A calculation of the mean electromotive force in electrically conducting fluid in turbulent motion, under the influence of Coriolis forces. Zeits. Naturforsch..
  89. Stix M. The Sun. Berlin–Heidelberg–New York: 1989 (The Sun. 2nd edition. Berlin: Springer-Verlag, 2002).
  90. Sweet P.A. (1950). The effect of turbulence on a magnetic field. Mon. Not. Roy. Astron. Soc., 110, 69–83.
  91. Tsinober A., Levich E. (1983). On the helical nature of three-dimensional coherent structures in turbulent flows. Physics Letters, 99A, 321–324. https://doi.org/10.1016/0375-9601(83)90896-4
  92. Vergassola M., Gama S., Frisch U. Proving the existence of negative isotropic eddy viscosity NATO-ASI: Solar and Planetary Dynamos, Eds. Proctor M.R.E., Mathews P.C., Rocklidge A.M, Cambridge: Cambridge Univ. Press, 1993, P.321–327. https://doi.org/10.1017/cbo9780511662874.043
  93. Webb A.R., Roberts B. (1978). Vertical motions in an intensive magnetic flux tubes. II – Convective instability. Solar Phys, 59, 249–274.
  94. Weiss N.O. (1966). The expulsion of magnetic flux by eddies. Proc. Roy. Soc. London., A293, 310–328. https://doi.org/10.1098/rspa.1966.0173
  95. Zeldovich Ya.B., Ruzmaikin A.A., Sokoloff D.D. Magnetic Fields in Astrophysics. New York: Gordon and Breach, 1983.

Download PDF