Astronomical School’s Report, 2013, Volume 9, Issue 1, Pages 28–36
UDC 523.98
The role of the negative helical turbulent viscosity in the fragmentations of the magnetic fields on the Sun
Krivodubskij V.N.
Astronomical Observatory, Kyiv Shevchenko National University, Ukraine
Abstract
The review of researches of displays of negative turbulent viscosity effect in the meteorological, geophysical and astrophysical phenomena is done. Underline, that spiral (helical) motions in rotating convective turbulence promote an inversion energy cascade from small-scale to the large-scale pulsations, what results in the effect of negative turbulent viscosity. Our calculations based on turbulent parameters for two solar convection zone (SCZ) models showed that favourable conditions for helical negative turbulent viscosity existence are created in deep layers. The possible role of the helical negative turbulent viscosity in formation of the discrete magnetic force flux tubes near bottom of the SCZ is discussed.
Keywords: negative turbulent viscosity; helical motions; convection zone; magnetic force flux tubes
References
- Avramenko A.A., Basok B.I., Tyrnov A.I., Kuznetsov A.V. (2007). Effekt otritsatel’noy turbulentnoy vyazkosti. Promyshlennaya teplotekhnika. – Kiev: Logos., 2007(1), 12–14.
- Braginsky S.I. (1964). Teoriya gidromagnitnogo dinamo. ZHETF, 47(12), 2178–2193.
- Vaynshteyn S.I., Zel’dovich Ya.B., Ruzmaykin A.A. (1980). Turbulentnoe dinamo v astrofizike. M.: Nauka. 352 p.
- Gor’kavyy N.N., Fridman A.M. (1990). Fizika planetnykh kolets. UFN, 160(2), 170–237.
- Grigor’ev V.M., Pescherov V.S., Osak B.V. (1983). Izmerenie fonovogo magnitnogo polya Solntsa v Sayanskoy solnechnoy observatorii. V sb.: Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa. – M.: Nauka, 1983. – Vyp. 64., 80–95.
- Gurevich L.E., Lebedinsky A.I. (1945). Magnitnoe pole solnechnykh pyaten. DAN SSSR, 49, 92–94.
- Zel’dovich Ya.B. (1956). Magnitnoe pole pri dvumernom dvizhenii provodyaschey zhidkosti. ZHETF, 31, 154–156.
- Kolesnichenko A.V., Marov M.Ya. (2008). Rol’ gidrodinamicheskoy spiral’nosti v evolyutsii protoplanetnogo turbulentnogo oblaka. Matematicheskoe modelirovanie, 20(10), 99–125.
- Kotov V.A., Khaneychuk V.I., Tsap T.T. (2002). K izmereniyam magnitnogo razbalansa Solntsa. Kinemat. i fiz. nebesnykh tel., 18(3), 205–216.
- Lebedinsky A.I. (1941). Vraschenie Solntsa. Astron. zhurnal., 18(1), 10–25.
- Moiseev S.S., Sagdeev R.Z., Tur A.V. i dr. (1983). Teoriya vozniknoveniya krupnomasshtabnykh struktur v gidrodinamicheskoy turbulentnosti. ZHETF, 1979–1987.
- Moiseev S.S., Rutkevich P.B., Tur A.V., Yanovsky V.V. (1988). Vikhrevoe dinamo v konvektivnoy srede so spiral’noy turbulentnost’yu. ZHETF, 144–153.
- Prist E.R. (1985). Solnechnaya elektrodinamika. M.: Mir. 592 p.
- Severnyy A.B. (1966). Issledovaniya obschego magnitnogo polya Solntsa. Izv. Krym. astrofiz. obs., 35, 97–138.
- Frenkel’ Ya.I. (1945). O proiskhozhdenii zemnogo magnetizma. DAN SSSR, 49, 98–101.
- Avramenko A.A., Basok B.I. (2006). Vortex effect as a consequence of negative turbulent diffusivity and viscosity. Journal of Engineering Physics and Thermophysics, 12(5), 957–962. https://doi.org/10.1007/s10891-006-0191-1
- Batchelor G.K. The Theory of Homogeneous Turbulence. Cambridge: Cambridge University Press, 1953.
- Beckers J.M., Schröter E.H. (1968). The intensity, velocity and magnetic structure of a sunspot region. I. Observational technique: properties of magnetic knots. Solar Phys, 4, 142–164. https://doi.org/10.1007/bf00148076
- Biermann L. (1951). Bemerkungen uber das Rotationsgesetz in irdischen und stellaren Instabilitatszonen. Zeits. Astrophys..
- Branover H., Moiseev S.S., Golbraikh E., Eidelman A. (1999). Turbulence and Structures: Chaos, Fluctuationd, and Helical Self-Organization in Nature and Laboratory. – San Diego: Acad Press, 1999. – 270 p. .
- Brissaund A., Frish U., Leorat J., Lessieur M., Mazure A. (1973). Helical cascade in fully developed turbulence. Phys. Fluids.. https://doi.org/10.1063/1.1694520
- Bumba V., Howard R. (1965). Large-scale distribution of solar magnetic fields. Astrophys. J., 141(4), 1502–1512. https://doi.org/10.1086/148238
- Csada I.K. (1951). On the magnetic effect of turbulence in ionized gases. Acta Phys. Hung., 1, 215–230.
- Childress S. (1979). Alpha-effect in flux ropes and sheets. Physics Earth & Planet. Inter., 20, 172–180. https://doi.org/10.1016/0031-9201(79)90039-6
- Duvall T.L., Wilcox J.M., Svalgaard L., et al. (1977). Comparison of Ha synoptic charts with the large-scale solar magnetic field as observed at Stanford. Solar Phys, 55(1), 63–68. https://doi.org/10.1007/bf00150874
- Haken H. (1977). Synergetics: an introduction. Berlin–Heidelberg–New York: Sringer-Verglag. 325 p.
- Haken H. (1983). Advanced Synergetics. Berlin–Heidelberg–New York–Tokyo: Sringer-Verglag. 356 p.
- Haken H. (1988). Information and Self-Organization: a macroscopic approach to complex systems. – Berlin – Heidelberg – New York – London – Paris – Tokyo: Springer-Verglag. 196 p.
- Getling A.V. (2001). Convective mechanism for the formation of photospheric magnetic fields. Astronomy Reports, 45, 569–576. https://doi.org/10.1134/1.1383816
- Getling A.V. (2012). The helicity of the velocity field for cellular convection in a rotating layer. Astronomy Reports, 56, 395–402. https://doi.org/10.1134/s1063772912040038
- Getling A.V., Buchnev A.A. (2010). Some structural features of the convective-velocity field in the solar photosphere. Astronomy Reports, 54, 254–259. https://doi.org/10.1134/s1063772910030078
- Gilman P.A. (1977). Nonlinear dynamics of boussinesq convection in a deep rotating spherical shell. I. Geophys. Astrophys. Fluid Dynamics., 8, 93–135. https://doi.org/10.1080/03091927708240373
- Gibson E.G. The Quiet Sun. Washington: Scientific and Technical Information Office, NASA, 1973.
- Ebeling W., Klimontovich Yu.L. Selforganization and Turbulence. Leipzig: Teubner-Verglag, 1984.
- Elsasser W.M. (1956). Hydromagnetic dynamo theory. Rev. Mod. Phys., 28, 135–163. https://doi.org/10.1103/revmodphys.28.135
- Fischer C.E., de Wijn A.G., Centeno R., Lites B.W., Keller C.U. (2009). Statistics of convective collapse invents in the photosphere and chromosphere observed with the Hinode SOT. Astron. Astrophys., 504, 583–588. https://doi.org/10.1051/0004-6361/200912445
- Frisch U., Pouquet A., Leorat I., Mazure A. (1975). Possibility of an inverse cascade of magnetichelicity in magnetohydrodynamic turbulence. Journ. Fluid Mech., 68, 769–778. https://doi.org/10.1017/s002211207500122x
- Kerr B.W., Darkow G.L. (1996). Storm-relative winds and helicity in the tornadic thunderstorm environment. Weath. and Forecast., 11, 489–496. https://doi.org/10.1175/1520-0434(1996)011<0489:srwahi>2.0.co;2
- Kolesnichenko A.V. (2002). A synergetic approach to the description of advanced turbulence. Solar System Research, 36, 107–124.
- Kolesnichenko A.V., Marov M.Ya. (2007). The effect of spirality of turbulence in the solar protoplanetary cloud. Solar System Research, 41, 1–18. https://doi.org/10.1134/s0038094607010017
- Kolesnichenko A.V., Marov M.Ya. (2009). Magnetohydrodynamic simulation of the protoplanetary disk of the Sun. Solar System Research, 43, 410–433. https://doi.org/10.1134/s0038094609050049
- Kolesnichenko A.V. (2011). On the simulations of helical turbulence in an astrophysical nonmagnetic disk. Solar System Research, 45, 246–263. https://doi.org/10.1134/s0038094611030026
- Kraichnan R.H. (1973). Helical turbulence and absolute equilibrium. J. Fluid Mech., 59, 745–752. https://doi.org/10.1017/s0022112073001837
- Kraichnan R.H. (1976). Diffusion of weak magnetic fields by isotropic turbulence. J. Fluid Mech., 75, 657–676. https://doi.org/10.1017/s002211207600044x
- Kraichnan R.H. (1976). Diffusion of passive-scalar and magnetic fields by helical turbulence. J. Fluid Mech., 77, 753–774. https://doi.org/10.1017/s0022112076002875
- Kraichnan R.H. (1976). Eddy viscosity in two and three dimensions. J. Atmos. Sci., 33, 1521–1536. https://doi.org/10.1175/1520-0469(1976)033<1521:evitat>2.0.co;2
- Krause F., Rädler K.-H. Mean-Field Magnetohydrodynamics and Dynamo Theory. Berlin: Academie-Verlag, 1980. (Moscow: Mir, 1984 [in Russian]).
- Krause F., Rüdiger G. (1974). On the Reynolds stress in mean-field hydrodynamics. II. Two-dimensional turbulence and the problem of negative viscosity. Astron. Nachrichten., 295(4), 185–193. https://doi.org/10.1002/asna.19742950404
- Krivodubskij V.N. (1998). Rotational anisotropy and magnetic quenching of gyrotropic turbulence in the solar convective zone. Astronomy Reports, 42, 122–126.
- Krivodubskij V.N. (2001). The structure of the global solar magnetic field excited by the turbulent dynamo mechanism. Astronomy Reports, 45, 738–745. https://doi.org/10.1134/1.1398923
- Krivodubskij V.N. (2005). Turbulent dynamo near tachocline and reconstruction of azimuthal magnetic field in the solar convection zone. Astron. Nachrichten., 326(1), 61–74. https://doi.org/10.1002/asna.200310340
- Krivodubskij V.N. (2012). Turbulent effects of sunspot magnetic field reconstruction. Kinematics and Physics of Celestial Bodies, 28(5), 232–238. https://doi.org/10.3103/s0884591312050054
- Lehnert B. (1955). The decay of magnetic fields in the presence of a magnetic field and Coriolis force. Qu. J. Appl. Math., 12, 321–341. https://doi.org/10.1090/qam/67648
- Levina G.V., Moiseev S.S. (1998). Negative turbulent heat conduction and its role in the formation of large-scale structures. Technical Physics Letters, 24(4), 315–318. https://doi.org/10.1134/1.1262096
- Lorenz E.N. (1953). The interaction between a mean flow and random disturbances. Tellus, 5, 238. https://doi.org/10.3402/tellusa.v5i3.8645
- Mininni P.D., Alexakis A., Pouquet A. (2009). Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers. Phys. Fluids., 21, 015108. https://doi.org/10.1063/1.3064122
- Mininni P.D., Pouquet A. (2009). Helicity cascades in rotating turbulence. Phys. Rev., 026304. https://doi.org/10.1103/physreve.79.026304
- Mininni P.D., Pouquet A. (2009). Rotating helical turbulence. Pt.I. Global evolution and spectral behaviour. Phys. Rev. E., 1–9. https://doi.org/10.1063/1.3358466
- Mininni P.D., Pouquet A. (2009). Helical rotating turbulence. Pt.II. Intermittency, scale invariance and structures. Phys. Rev. E., 1–11. https://doi.org/10.1063/1.3358471
- Moffatt H.K. (1969). The degree of knottedness of tangled vortex lines. J. Fluid Mech., 35, 117–129. https://doi.org/10.1017/s0022112069000991
- Moffatt H.K.J. (1974). The mean electromotive force generated by turbulence in the limit of prefect conductivity. J. Fluid Mech., 65, 1–10. https://doi.org/10.1017/s0022112074001200
- Moiseev S.S., Chkhetiani O.G. (1996). The helical scaling of turbulence. JETF, 110(7), 357–371.
- Monin A.S. (1959). Turbulence in shear flow with stability. Journal of Geophysical Research, 64, 2224–2225. https://doi.org/10.1029/jz064i012p02224
- Nagata S., Tsuneta S., Suematsu Y., et al. (2008). Formation of solar magnetic flux tubes with kilogauss field strength ionduced by convective instability. Astrophys. J., 667, L145-L147. https://doi.org/10.1086/588026
- November L.J., Toomre J., Gebbie K.V., Simon G.W. (1981). The detection of mesogranulation on the Sun. Astrophys. J., 245L, L123-L126. https://doi.org/10.1086/183539
- November L.J. (1986). Measurement of geometric distortion in a turbulent atmosphere. Applied Optics, 25, 392–397. https://doi.org/10.1364/ao.25.000392
- Parker E.N. (1955). Hydromagnetic dynamo models. Astrophys. Journ., 122, 293–314.
- Parker E.N. (1978). Hydraulic consentration of magnetic fields in the solar photosphere. VI. Adiabatic cooling and concentration in downdrafts. Astrophys. J., 221, 368–377. https://doi.org/10.1086/156035
- Parker E.N. Cosmic Magnetic Fields. Oxford: Oxford University Press, 1979. (Moscow: Mir, 1982 [in Russian]).
- Pouquet F., Frisch U., Leorat J. (1976). Strong MHD turbulence and the nonlinear dynamo effect. Journ. Fluid Mech., 77, 321–354. https://doi.org/10.1017/s0022112076002140
- Prigogine I., Nicolis G. Self-Organization in Non-Equilibrium Systems. Wiley, 1977.
- Prigogine I., Stengers I. Order out of Chaos. Toronto–New York–London–Sydney: Bantam Books, 1984.
- Rädler K.-H. (1966). Zur Elektrodynamik turbulent bewegterm leitender Mediem. Thesis.
- Rädler K.-H. (1968). Zur Elektrodynamik turbulent bewegterm leitender Mediem. Zeits. Naturforsch. I..
- Rüdiger G. (1974). The influence of a uniform magnetic field of arbitrary strength on turbulence. Astron. Nachrichten., 295(6), 275–283. https://doi.org/10.1002/asna.19742950605
- Rudiger G. (1974). On the Reynolds Stresses in Mean Field Hydrodynamics. III. Two-Dimensional Turbulence and the Problem of Differential Rotation. Astron. Nachrichten., 295(5), 229–235. https://doi.org/10.1002/asna.19742950506
- Rüdiger G. (1980). On the negative viscosity in MHD turbulence. Magnetic Hydrodynamics (Riga), 1980(1), 3–14.
- Rüdiger G. (1989). Differential Rotation and Stellar Convection of the Sun and Solar-Type Stars. Berlin: Academie-Verlag. 328 p.
- Rüdiger G., Arlt R. (2002). Physics of solar cycle. In: Advances in nonlinear dynamos / The Fluid Mechanics of Astrophysics and Geophysics, 9, 147–191. https://doi.org/10.1201/9780203493137.ch6
- Simon G.W., Leighton R.B. (1964). Velocity fields in the solar atmosphere. III. Large-scale motions, the chromospheric network, and magnetic fields. Astrophys. J., 140, 1120–1147. https://doi.org/10.1086/148010
- Simon G.W., Brandt P.N., November L.J., Scharmer G.B., Shine R.A. (1994). Large-scale photospheric motions: first results from an extraordinary eleven-hour granulation observation. In: Solar Surface Magnetism, eds R.J.Rutten, C.J.Schrijver. – Science Institute, Advanced Science Institute Series C: Mathematical and Physical Sciences. – V.433 (Dordrecht: Kluver, 1994)., 261. https://doi.org/10.1007/978-94-011-1188-1_23
- Smith L.M., Waleffe F. (1999). Transfer of energe to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids., 11, 1608–1622. https://doi.org/10.1063/1.870022
- Spruit H. A convection zone model Magnetic flux tubes and transport of heat in the convection zone of the Sun. Thesis, Utrecht: Univ. Utrecht, 1977, P.17–34.
- Spruit H.C. (1979). Convective collapse of flux tubes. Solar Phys, 61, 363–378. https://doi.org/10.1007/bf00150420
- Spruit H.C., Zweibel E.G. (1979). Convective instability of thin flux tubes. Solar Phys, 62, 15–22. https://doi.org/10.1007/bf00150128
- Starr V.P. Physics of Negative Viscosity Phenomena. Toronto–London–Sydney: McGraw-Hill Book Company, 1968.
- Starr V.P., Gaut N.E., Copeland J.A. (1967). Angular momentum transport in the solar nebula. Pure and Applied Geophysics PAGEOPH, 221–232. https://doi.org/10.1007/bf00880580
- Steenbeck M., Krause F., Rädler K.-H. (1966). A calculation of the mean electromotive force in electrically conducting fluid in turbulent motion, under the influence of Coriolis forces. Zeits. Naturforsch..
- Stix M. The Sun. Berlin–Heidelberg–New York: 1989 (The Sun. 2nd edition. Berlin: Springer-Verlag, 2002).
- Sweet P.A. (1950). The effect of turbulence on a magnetic field. Mon. Not. Roy. Astron. Soc., 110, 69–83.
- Tsinober A., Levich E. (1983). On the helical nature of three-dimensional coherent structures in turbulent flows. Physics Letters, 99A, 321–324. https://doi.org/10.1016/0375-9601(83)90896-4
- Vergassola M., Gama S., Frisch U. Proving the existence of negative isotropic eddy viscosity NATO-ASI: Solar and Planetary Dynamos, Eds. Proctor M.R.E., Mathews P.C., Rocklidge A.M, Cambridge: Cambridge Univ. Press, 1993, P.321–327. https://doi.org/10.1017/cbo9780511662874.043
- Webb A.R., Roberts B. (1978). Vertical motions in an intensive magnetic flux tubes. II – Convective instability. Solar Phys, 59, 249–274.
- Weiss N.O. (1966). The expulsion of magnetic flux by eddies. Proc. Roy. Soc. London., A293, 310–328. https://doi.org/10.1098/rspa.1966.0173
- Zeldovich Ya.B., Ruzmaikin A.A., Sokoloff D.D. Magnetic Fields in Astrophysics. New York: Gordon and Breach, 1983.
Download PDF