Astronomical School’s Report, 2012, Volume 8, Issue 2, Pages 175–181

https://doi.org/10.18372/2411-6602.08.2175
Download PDF
UDC 523.34-3

Observations of the nonstationary atmosphere of the Moon and some its parameters

Churyumov K.I.1, Berezhnoy A.A.2, Ponomarenko V.O.1, Baransky O.R.1, Churyumova T.K.1, Kleshchenok V.V.1, Mozgova A.M.1, Kovalenko N.S.1, Shevchenko V.V.2, Kozlova E.A.2, Pakhomov Yu.V.3, Velikodsky Yu.I.4

1Kyiv Shevchenko National University, Ukraine
2Moscow State University, Russia
3Institute of Astronomy of the Russian Academy of Sciences, Russia
4Institute of Astronomy, Kharkiv V.N.Karazin National University, Ukraine

Abstract

Quick increase of brightness of Na D1 and D2 lines in the lunar exosphere during maximum of Perseid 2009 meteor shower on August 13, 2009 at 0-1h UT is detected and explained by collisions of Perseid meteoroids with the Moon. Total mass of impacted Perseid meteoroids is about 15 kg. Upper limits of intensities of Si, Al, Ca, Fe, Ti, Ba, Li, and Mn lines in the lunar exosphere are estimated.

Keywords: Moon; atmospheres; composition; meteors; impact processes

References

  1. Smith S.M. Wilson J. K., Baumgardner J., Mendillo M. (1999). Discovery of the distant lunar sodium tail and its enhancement following the Leonid meteor shower of 1998. Geophys. Res. Lett., 26, 1649–1652. https://doi.org/10.1029/1999gl900314
  2. Wilson J.K., Baumgardner J., Mendillo M.J. (2003). The outer limits of the lunar sodium exosphere. Geophys. Res. Lett.. https://doi.org/10.1029/2003gl017443
  3. Barbieri C., Benn C.R., Cremonese G., Verani S., Zin A. (2001). Meteor showers on the lunar atmosphere. Earth, Moon, and Planets, 479–486. https://doi.org/10.1007/978-94-010-0800-6_42
  4. Flynn B.C., Stern S.A. (1996). A spectroscopic survey of metallic species abundances in the lunar atmosphere. Icarus, 124, 530–536. https://doi.org/10.1006/icar.1996.0228
  5. Wurz P., Rohner U., Whitby J.A., Kolb C., Lammer H., Dobnikar P., Martín-Fernández J.A. (2007). The lunar exosphere: the sputtering contribution. Icarus, 191, 486–496. https://doi.org/10.1016/j.icarus.2007.04.034
  6. Sarantos M., Killen R.M., Glenar D.A., Benna M., Stubbs T.J. (2012). Metallic species, oxygen and silicon in the lunar exosphere: Upper limits and prospects for LADEE measurements. J. Geophys. Res.. https://doi.org/10.1029/2011ja017044
  7. Bruno M., Cremonese G., Marchi S. (2007). Neutral sodium atoms release from the surfaces of the Moon and Mercury induced by meteoroid impacts. Planet. Space Sci., 55, 1494–1501. https://doi.org/10.1016/j.pss.2006.10.006
  8. Berezhnoy A.A. (2010). Meteoroid bombardment as a source of the lunar exosphere. Advances in Space Research, 45, 70–76. https://doi.org/10.1016/j.asr.2009.07.014
  9. Berezhnoy A.A., Churyumov K.I., Shevchenko V.V., Baransky O.R., Buchachenko A.A., Churyumova T.K., Kleshchenok V.V., Kozlova E.A., Ponomarenko V.O., Stolyarov A.V., Tvorun O.V. (2011). Behavior of Na atoms in the lunar exosphere during activity of meteor showers. Astronomical School's Report, 7, 185–189. https://doi.org/10.18372/2411-6602.07.2185
  10. Tug H. (1977). Vertical extinction on La Silla. ESO Messenger, 11, 7–8.
  11. Morgan Th.H., Killen R.M. (1997). A non-stoichiometric model of the composition of the atmospheres of Mercury and the Moon. Planetary and Space Science, 45, 81–94. https://doi.org/10.1016/s0032-0633(96)00099-2
  12. Berezhnoy A.A., Hasebe N., Kobayashi M., Michael G.G., Okudaira O., Yamashita N. (2005). A three end-member model for petrologic analysis of lunar prospector gamma-ray spectrometer data. Planet. Space Sci., 53, 1097–1108. https://doi.org/10.1016/j.pss.2005.02.006
  13. Lodders K., Fegley B. The Planetary Scientist Companion. Oxford University Press, 1998, R. 371.
  14. Cintala M. (1992). Impact-induced thermal effects in the lunar and Mercurian regoliths. JGR, 97, 947–973. https://doi.org/10.1029/91je02207
  15. Huebner W.F., Keady J.J., Lyon S.P. (1992). Solar photo rates for planetary atmospheres and atmospheric pollutants. Astrophys. Space Sci.. https://doi.org/10.1007/bf00644558
  16. Killen R.M., Bida Th.A., Morgan Th.H. (2005). The calcium exosphere of Mercury. Icarus, 300–311. https://doi.org/10.1016/j.icarus.2004.08.022
  17. Solar monitor, 2009, http://www.solarmonitor.org
  18. OMNI, 2009, http://omniweb.gsfc.nasa.gov
  19. IMO, 2009, http://www.imo.net/live/perseids2009
  20. Potter A.E., Morgan T.H. (1988). Discovery of sodium and potassium vapor in the atmosphere of the Moon. Science, 241, 675–680. https://doi.org/10.1126/science.241.4866.675
  21. Sarantos M., Killen R.M., Sharma A.S., Slavin J.A. (2008). Influence of plasma ions on source rates for the lunar exosphere during passage through the Earth's magnetosphere. Geophys. Res. Lett.. https://doi.org/10.1029/2007gl032310
  22. Pecinová D., Pecina P. (2007). Radar meteors range distribution model. II. Shower flux density and mass distribution index. Contributions of the Astronomical Observatory Skalnaté Pleso, 37, 107–124.
  23. Hughes D., McBride N. (1989). The mass of meteoroid streams. Mon. Not. Roy. Astron. Soc., 240, 73–79.
  24. Yanagisawa M., Ohnishi K., Takamura Y., Masuda H., Sakai Y., Ida M., Adachi M., Ishida M. (2006). The first confirmed Perseid lunar impact flash. Icarus, 182, 489–495. https://doi.org/10.1016/j.icarus.2006.01.004

Download PDF