Astronomical School’s Report, 2011, Volume 7, Issue 2, Pages 185–189

https://doi.org/10.18372/2411-6602.07.2185
Download PDF
UDC 523.3

Behavior of Na atoms in the lunar exosphere during activity of meteor showers

Berezhnoy A.A.1, Churyumov K.I.2, Shevchenko V.V.1, Buchachenko A.A.3, Baransky O.R.2, Churyumova T.K.2, Kleshchenok V.V.2, Kozlova E.A.1, Ponomarenko V.O.2, Stolyarov A.V.3, Tvorun O.V.4

1Sternberg Astronomical Institute, Moscow State University, Moscow, Russia
2Shevchenko National University, Kiev, Ukraine
3Department of Chemistry, Moscow State University, Moscow, Russia
4Vinnitsa State Technical University, Vinnitsa, Ukraine

Abstract

The chemical composition of gas-phase species released to the lunar exosphere during meteoroid impacts has been analyzed. Majority of impact-produced metal-containing molecules are destroyed by the solar photons because typical photolysis lifetimes are shorter than ballistic flight times. Energies of metal atoms produced via photolysis of its monoxides are estimated. The column density of impact-produced Na atoms in the exosphere during activity of main meteor shower and quiet periods are estimated. In searching for impact-produced Na atoms in the lunar exosphere, it is better to perform spectral observations during activity of the main meteor showers at altitudes of about 1000–2000 km, lunar eclipses, and during passages of the Moon through the Earth's magnetosphere.

Keywords: meteor showers; lunar surface; lunar exosphere

References

  1. Barbieri C., Benn C.R., Cremonese G., et al. (2001). Meteor showers on the lunar atmosphere. Earth, Moon, and Planets, 85–86, 479–486. https://doi.org/10.1007/978-94-010-0800-6_42
  2. Berezhnoy A.A., Hasebe N., Kobayashi M., et al. (2005). A three end-member model for petrologic analysis of lunar prospector gamma-ray spectrometer data. Planet. Space Sci., 1097–1108.
  3. Berezhnoy A.A. (2010). Meteoroid bombardment as a source of the lunar exosphere. Advances in Space Research, 70–76. https://doi.org/10.1016/j.asr.2009.07.014
  4. Bruno M., Cremonese G., Marchi S. (2007). Neutral sodium atoms release from the surfaces of the Moon and Mercury induced by meteoroid impacts. Planet. Space Sci., 55, 1494–1501. https://doi.org/10.1016/j.pss.2006.10.006
  5. Cintala M. (1992). Impact-induced thermal effects in the lunar and Mercurian regoliths. J. Geophys. Res., 97, 947–973. https://doi.org/10.1029/91je02207
  6. Flynn B.C., Stern S.A. (1996). A spectroscopic survey of metallic species abundances in the lunar atmosphere. Icarus, 124, 530–536. https://doi.org/10.1006/icar.1996.0228
  7. Herzog G.F., Moynier F., Albaréde F., et al. (2009). Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pelé's hairs, and a terrestrial basalt. Geochimica Cosmochimica Acta, 5884–5904. https://doi.org/10.1016/j.gca.2009.05.067
  8. Hughes D., McBride N. (1989). The mass of meteoroid streams. Mon. Not. Roy. Astron. Soc., 240, 73–79.
  9. Huebner W.F., Keady J.J., Lyon S.P. (1992). Solar photo rates for planetary atmospheres and atmospheric pollutants. Astrophys. Space Sci., 195, 1–289, P.291–294. https://doi.org/10.1007/bf00644558
  10. Hunten D.M., Morgan T.M., Shemansky D.E. (1988). The Mercury atmosphere. in: Vilas F., Chapman C., Matthews M., (Eds.) Mercury (A89-43751 19-91)..
  11. IMO, 2009, “Perseids 2009: visual data quicklook”, http://www.imo.net/live/perseids2009
  12. Jessberger E., Christoforidis A., Kissel J. (1988). Aspects of the major element composition of Halley's dust. Nature, 332, 691–695. https://doi.org/10.1038/332691a0
  13. Killen R.M., Potter A.E., Hurley D.M., et al. (2010). Observations of the lunar impact plume from the LCROSS event. Geophys. Res. Lett.. https://doi.org/10.1029/2010gl045508
  14. Lodders K., Fegley B. (1998). The Planetary Scientist Companion. Oxford University Press.
  15. Makansi M.M., Muendel C.H., Selke W.A. (1955). Determination of vapor pressure of sodium. J. Physical Chemistry, 59, 40–42. https://doi.org/10.1021/j150523a012
  16. PDS, 2011, http://ode.rsl.wustl.edu/moon/
  17. Potter A.E., Morgan T.H. (1988). Discovery of sodium and potassium vapor in the atmosphere of the Moon. Science, 241, 675–680. https://doi.org/10.1126/science.241.4866.675
  18. Sarantos M., Killen R.M., Sharma A.S., et al. (2008). Influence of plasma ions on source rates for the lunar exosphere during passage through the Earth's magnetosphere. Geophys. Res. Lett.. https://doi.org/10.1029/2007gl032310
  19. Self D.E., Plane J.M.C. (2002). Absolute photolysis cross-sections for NaHCO3, NaOH, NaO, NaO2 and NaO3: implications for sodium chemistry in the upper mesosphere. Physical Chemistry, Chemical Physics, 4, 16–23.
  20. Smith S.M., Wilson J.K., Baumgardner J., et al. (1999). Discovery of the distant lunar sodium tail and its enhancement following the Leonid meteor shower of 1998. Geophys. Res. Lett., 26, 1649–1652. https://doi.org/10.1029/1999gl900314
  21. Vanzani V., Marzari F., Dotto E. (1997). Micrometeoroid impacts on the lunar surface. Lunar Planetary Science Conference, 28, 481–482.
  22. Vasavada A.R., Paige D.A., Wood S.E. (1999). Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits. Icarus, 141, 179–193. https://doi.org/10.1006/icar.1999.6175
  23. Wilson J.K., Baumgardner J., Mendillo M.J. (2003). The outer limits of the lunar sodium exosphere. Geophys. Res. Lett., 30, 1649. – doi:10.1029/2003GL017443. https://doi.org/10.1029/2003gl017443
  24. Zurbuchen T.H., Raines J.M., Slavin J.A., et al. (2011). MESSENGER observations of the spatial distribution of planetary ions near Mercury. Science, 333, 1862–1865. https://doi.org/10.1126/science.1211302

Download PDF