Astronomical School’s Report, 2011, Volume 7, Issue 1, Pages 42–47

https://doi.org/10.18372/2411-6602.07.1042
Download PDF
UDC 551.510

Temperature changes of the Earth upper atmosphere over storms from satellite measurements

Kozak L.V., Pylypenko S.G.

Kyiv Shevchenko National University, Ukraine

Abstract

In the paper we analyze temperature changes of the earth upper atmosphere over 6 storms, which occurred in 1993–1994 years. The measurements from satellite UARS in altitudinal range from 80 km to 300 km were used. The obtained temperature increasing at the heights of mesopause can be explained by the propagation and dissipation of atmosphere gravity waves in non-isothermal atmosphere with taking into account the viscosity and thermal conductivity. After numerical modeling we found that the temperature gradient along altitude had been the main factor of dissipation and propagation of the waves. At the same time, the amplitude of the waves has low dependence from coefficients of viscosity and thermal conductivity.

Keywords: remote aerospace sensing; gravitational waves in the Earth's atmosphere; properties of hurricanes

References

  1. Antonova L.A., Ivanov-Kholodnyy G.S. (1989). Solnechnaya aktivnost’ i ionosfera. M.: Nauka. 168 p.
  2. Bryunelli B.E., Namgaladze A.A. (1988). Fizika ionosfery. M.: Nauka. 528 p.
  3. Gossard E., Khuk U. (1975). Volny v atmosfere. M.: Mir. 532 p.
  4. Grigor’ev G.I. (1999). Akustiko-gravitatsionnye volny v atmosfere Zemli (obzor). Izv. VUZov Radiofizika., 42(1), 3–25.
  5. Kozak L.V. (2002). Zmina turbulentnykh protsesiv u nyzhniy termosferi pry prokhodzhenni vnutrishnikh hravitatsiynykh khvyl’. Kosmichna nauka i tekhnolohiya, 8(5/6), 86–90. https://doi.org/10.15407/knit2002.05.086
  6. Khayns K.O. (1975). Termosfernaya tsirkulyatsiya. M.: Mir. 428 p.
  7. Francis S.H. (1975). Global propagation of atmospheric gravity waves: a review. J. Atmos. Terr. Phys., 37, 1011–1054. https://doi.org/10.1016/0021-9169(75)90012-4
  8. Francis S.H. (1973). Acoustic-Gravity Modes and Large-Scale Traveling Ionospheric Disturbances of a Realistic, Dissipative Atmosphere. J. Geophys. Res., 78, 2278–2301. https://doi.org/10.1029/ja078i013p02278
  9. Hocking W.K. (1990). Turbulence in the altitude region 80–120 km. Advance in Space Research, 10(12), 153–161. https://doi.org/10.1016/0273-1177(90)90394-f
  10. Hodges R.R.Jr. (1969). Eddy diffusion coefficients due to instabilities in internal gravity waves. J. Geophys. Res., 74, 4087–4090. https://doi.org/10.1029/ja074i016p04087
  11. Imamura T., Ogawa T. (1995). Radiative damping of gravity waves in the terrestrial planetary atmospheres. Geophys. Res. Lett., 22(3), 267–270. https://doi.org/10.1029/94gl02998
  12. Kozak L.V., Dzubenko M.I., Ivchenko V.M. (2004). Temperature and thermosphere dynamics behavior analysis over earthquake epicentres from satellite measurements. Physics and Chemistry of the Earth. Parts A/B/C., 29(4–9), 507–515. https://doi.org/10.1016/j.pce.2003.09.020
  13. Midgley J.E., Liemohn H.B. (1966). Gravity waves in a realistic atmosphere. J. Geophys. Res., 71, 3729–3730. https://doi.org/10.1029/jz071i015p03729
  14. Pitteway M., Hines C. (1963). The viscous damping of atmospheric gravity waves. Can. J. Phys., 41, 1935–1948. https://doi.org/10.1139/p63-194
  15. Reber C.A., Trevathan C.E., McNeal R.J., Luther M.R. (1993). The Upper Atmosphere Research Satellite (UARS) Mission. J. Geophys. Res., 10643–10647. https://doi.org/10.1029/92jd02828
  16. Volland H. (1969). The upper atmosphere as a multiply refractive medium for neutral air motions. J. Atmos. Terr. Phys., 31, 491–530. https://doi.org/10.1016/0021-9169(69)90002-6
  17. Volland H. (1969). Full wave calculations of gravity wave propagation through the thermosphere. J. Geophys. Res., 74, 1786–1823. https://doi.org/10.1029/ja074i007p01786
  18. Zhang S.D., Yi F. (2002). A numerical study of propagation characteristics of gravity wave packets propagating in a dissipative atmosphere. J. Geophys. Res., 1–9. https://doi.org/10.1029/2001jd000864

Download PDF