Astronomical School’s Report, 2004, Volume 5, Issue 1-2, Pages 163–168

https://doi.org/10.18372/2411-6602.05.1163
Download PDF
UDC UDC 523.64

On dynamical and physical evolution of 95P/Chiron as Centaurs representative

Kovalenko N.S., Babenko Yu.G., Churyumov K.I.

Astronomical Observatory of Kyiv National University

Abstract

The long-term orbital evolution modeling of 95P/Chiron (2060) is discussed with its implication to the physical evolution of this representative of Centaurs group. In this work we have carried out the orbital evolution modeling for 33 objects of Centaurs population, and for 2 distant Jupiter-family comets 39P/Oterma and 29P/Schwassmann–Wachmann 1. The calculations were produced for 1 million years backward and forward from the present time. The Everhart implicit single sequence methods for integrating orbits were used. Due to discovered cometary activity in 2060 Chiron it is of interest to reveal Centaurs modeled orbits with small perihelion distances. Such orbits could lead to “waking up” of cometary nature in some Centaurs. The modeled orbital evolution patterns of Centaurs are analyzed and the fraction of potential candidates to comets are discussed.

Keywords:

References

  1. Carusi A., Kresak L., Valsecchi G.B. Perturbations by Jupiter of a chain of objects moving in the orbit of comet Oterma, Astron. Astrophys, 1981, 99, P. 262–269.
  2. Everhart E. Implicit single sequence methods for integrating orbits, Celestial Mechanics, 1974, 10, P. 35–55. https://doi.org/10.1007/bf01261877
  3. Hahn G., Bailey M.E. Rapid dynamical evolution of giant comet Chiron, Nature, 1990, 348, P. 132–136. https://doi.org/10.1038/348132a0
  4. Jewitt D., in Fitzsimmons A., Jewitt D., West R.M. (eds.), ESO Workshop on Minor Bodies in the Outer Solar System, November 2–5 1998, Garching, Germany, Springer-Verlag, Berlin, New York, ISBN 3-540-41152-6, 2000, P. 1–5.
  5. Kovalenko N., Babenko Yu., Churyumov K. Orbital evolution of some Centaurs, Proceedings of ACM 2002, 29 July — 2 August 2002, Berlin, Germany (ESA-SP-500, November 2002).
  6. Kovalenko N., Babenko Yu., Churyumov K. Modeling of the orbital evolution of 2060 Chiron, Earth, Moon and Planets, 2002, 90. https://doi.org/10.1023/a:1021515307692
  7. Kowal C.T., Liller W., Marsden B.G., in Symposium on the Dynamics of the Solar System, 23–26 May 1978, Tokio, Japan, (A79-36276 15-89) — Dordrecht, D. Reidel Publishing Co, 1979, P. 245–250. https://doi.org/10.1017/s007418090001281x
  8. Lindgren M. Dynamical timescales in the Jupiter family, Asteroids, Comets, Meteors, 1991, P. 371–374.
  9. Luu J., Jewitt D., Trujillo Ch., Astrophys. J, 2000, 531, No 2, L151 – L154. https://doi.org/10.1086/312536
  10. Nakamura Ts., Yoshikawa M. Orbital evolution of giant comet-like objects, Celestial Mechanics, 1993, 57, P. 113–121. https://doi.org/10.1007/bf00692467
  11. Oikawa S., Everhart E. Past and future orbit of 1977 UB, object Chiron, Astronomical Journal — 1979, 84, P. 134–139. https://doi.org/10.1086/112399
  12. Scholl H. History and evolution of Chiron’s orbit, ICARUS, 1979, 40, P. 345–349. https://doi.org/10.1016/0019-1035(79)90025-3
  13. Sheppard Sc., Jewitt D., Trujillo Ch., Brown M., Ashley M., Astron. J, 2000, 120, No 5, P. 2687–2694. https://doi.org/10.1086/316805
  14. Shor V.A. Ephemerides of minor planets for 2002, St.-Petersburg: Russian Academy of Sciences, Institute of Applied Astronomy Publishing, 2001.
  15. Tancredi G. The dynamical memory of Jupiter family comets, Astron. Astrophys, 1995, 299, P. 288–292.
  16. Tholen D.J., et al. Object 2060 Chiron, IAU Circ, 1998, 4554.
  17. Vaghi S. Orbital evolution of comets and dynamical characteristics of Jupiter’s family, Astron. Astrophys, 1973, 29, P. 85–91.

Download PDF