Astronomical School’s Report, 2004, Volume 5, Issue 1-2, Pages 73–78

https://doi.org/10.18372/2411-6602.05.1073
Download PDF
UDC 523.45–842–655

On the mechanism of polarization origin at the polar regions of Jupiter

Goryunova O.S., Korokhin V.V., Akimov L.A., Shalygin E.V., Velikodsky Yu.I.

Institute of Astronomy, Kharkiv V.N.Karazin National University, Ukraine

Abstract

We have proposed a following mechanism of linear polarization origin at the Jupiter polar regions: the principal contribution in polarization is made by the light reflected by underlying surface and then scattered on aerosol haze particles. We have calculated the linear polarization distributions along the central meridian for 2 spectral bands (0.456 and 0.65 μm). They have a good qualitative agreement with observational data. We have estimated the mean scattering particles radius: r_mean =0.5 μm.

Keywords:

References

  1. Korokhin V.V., Beletsky S.A., Velikodsky Yu.I., Konichek V.V., Sinel’nikov I.E. Opyt primeneniya PZS fotopriemnikov na Astronomicheskoy observatorii KHNU, Kinematika i fizika nebesnykh tel, 2000, 16, No 1, P. 80–86.
  2. Starodubtseva O.M., Teyfel’ V.G. Polyarizatsiya sveta v polyarnykh oblastyakh Yupitera, Astron. vestn, 1984, 18, No 3, P. 179–190.
  3. Teyfel’ V.G. Polyarnye oblasti Yupitera i Saturna., Astron. vestn, 1985, 19, No 1, P. 48–63.
  4. Ah-San Wong, Anthony Y.T., Yuk L. Yung Jupiter: Aerosol chemistry in the polar atmosphere, The Astrophysical Journal, 2000, 534, P. L215–L217. https://doi.org/10.1086/312675
  5. Anthony Mallama, Bruce F. Krobusek, Donald A. Collins, et al. The radius of Jupiter and its polar haze, Icarus, 2000, 144, P. 99–103. https://doi.org/10.1006/icar.1999.6276
  6. Braak C.J., de Haan J.F., Hovenier J.W., Travis L.D. Galileo Photopolarimetry of Jupiter at 678 nm, Icarus, 2002, 157, No 2, P. 401–418. https://doi.org/10.1006/icar.2002.6846
  7. Dlugach J.M., Mishchenko M.I. The effect of particle shape on physical properties of the Jovian aerosols obtained according earth-based spectropolarimetric observations, Abstracts of NATO ASI, 2003.
  8. Flasar F.M. CIRS observations of Jupiter, COSPAR abstract, 2002.
  9. Friedson A. James, Wong Ah-San, Yung Yuk L. Models for Polar Haze Formation in Jupiter’s Stratosphere, Icarus, 2002, 158, Issue 2, P. 389–400. https://doi.org/10.1006/icar.2002.6885
  10. Kim S.J., Caldwell J., Rivolo A.R., Wagener R., Orton G.S. Infrared polar brightening on Jupiter// Icarus, 1985, 64, P. 233–248. https://doi.org/10.1016/0019-1035(85)90088-0
  11. Kim S.J., Drossart P., Caldwell J., Maillard J.P., et al. The 2-m polar haze of Jupiter, Icarus, 1991, 91, P. 145–153. https://doi.org/10.1016/0019-1035(91)90133-e
  12. Morozhenko A.V., Yanovitskii E.G. The optical properties of Venus and the jovian planets. I. The atmosphere of Jupiter according to polarimetric observations, Icarus, 1973, 18, P. 583–592. https://doi.org/10.1016/0019-1035(73)90060-2
  13. Smith P.H., Tomasko M.G. Photometry and polarimetry of Jupiter at large phase angles. II. Polarimetry of the South Tropical Zone, South Equatorial Belt, and the Polar regions from the Pioneer 10 and 11 missions, Icarus, 1984, 58, P. 35–73. https://doi.org/10.1016/0019-1035(84)90097-6
  14. Starodubtseva O.M., Akimov L.A., Korokhin V.V. Seasonal variation of the North-South asymmetry of polarized light of Jupiter, Icarus, 2002, 157, No 2, P. 419–425. https://doi.org/10.1006/icar.2002.6820
  15. West R.A. Voyager 2 imaging eclipse observations of the Jovian high altitude haze., Icarus, 1988, 75, P. 381–398. https://doi.org/10.1016/0019-1035(88)90152-2
  16. Wong Ah-San, Yung Yuk L.A., James A. Friedson Benzene and haze formation in the polar atmosphere of Jupiter, Geophysical research letters, 2003, 30, doi:10.1029/2002GL016661, P. 30. https://doi.org/10.1029/2002gl016661

Download PDF