Astronomical School’s Report, 2002, Volume 3, Issue 2, Pages 70–80

https://doi.org/10.18372/2411-6602.03.2070
Download PDF
UDC 681.782.44

Interferometric method of the imaging as the basis of construction of multimirror telescopes

Pugach V.V., Kornienko Yu.V.

Usikov Institute for Radiophysics and Electronics, Ukraine

Abstract

The given work is devoted to the problem of overcoming the Terrestrial atmosphere interference during astronomical observations. The interferometric imaging been proposed earlier is investigated in the work. This method is based on measuring the coherence electromagnetic field function in the optical wave band. The method advantages over the traditional method of astronomical observation using the telescope and the multimirror telescope of the same configuration is demonstrated on computer simulation.

Keywords:

References

  1. Herschel W. The scientific papers, London: The Royal Society and the Royal Astronomical Society, 1912.
  2. Fanberg R.T. Space Telescope Hubble, Sky & Telescope, 1990, 79, P. 366–375.
  3. Koval’ I.K. O vozmozhnosti vosstanovleniya izobrazheniya astronomicheskogo ob’ekta, iskazhennogo vliyaniem zemnoy atmosfery, Astron. tsirkulyar, 1965, No 317, P. 1–20.
  4. Dudinov V.N. O vozmozhnosti ucheta pogreshnostey, vyzvannykh zamytiem izobrazheniya planet, Astron. zhurn, 1969, 46, vyp. 5, P. 1064–1073.
  5. Helstrom C.W. Image reconstruction by the method of least squares, J. Opt. Soc. Amer, 1967, 57, No 3, P. 297–303. https://doi.org/10.1364/josa.57.000297
  6. Dudinov V.N., Tsvetkova V.S., Krishtal’ V.S. et al. Kogerentno-optichesky vychislitel’ Khar’kovskogo universiteta, Vestn. Khar’k. un-ta, 1977, 160, P. 65–76.
  7. Babcock H.W. The possibility of compensating astronomical seeing, Publ. Astron. Soc. Pac, 1953, 65, P. 229–236. https://doi.org/10.1086/126606
  8. Roggemann M.C., Welsh B.M., Fugate R.Q. Improving the resolution of ground-based telescopes, Reviews of Modern Physics, 1997, 69, P. 437–505. https://doi.org/10.1103/revmodphys.69.437
  9. Brandner W., Rousset G., Lenzen R., et al. NAOS+CONICA at YEPUN: First VLT Adaptive Optics System Sees First Light, The ESO Messenger, 2002, No 107, P. 1–6.
  10. Labeyrie A. Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images, Astron. and Astrophys, 1970, 6, P. 85–87.
  11. Jenison R.C. A phase sensitive interferometer technique for the Fourier transform spatial brightness distributions of small angular extent, Mon. Notic. Roy. Astron. Soc, 1958, 118, P. 278–384. https://doi.org/10.1093/mnras/118.3.276
  12. Rhodes W.T., Goodman J.W. Interferometric technique for recording and restoring images by unknown aberration, J. Opt. Soc. Amer, 1973, 63, No 6, P. 647–657. https://doi.org/10.1364/josa.63.000647
  13. Uvarov V.N. O vozmozhnosti polucheniya izobrazheny s diffraktsionnym razresheniem pri nablyudenii skvoz’ neodnorodnuyu sredu, Dokl. AN USSR, Ser. A, 1979, No 10, P. 839–841.
  14. Bates R.H.T. A stochastic image restoration procedure, Opt. Comm, 1976, 19, P. 240–244. https://doi.org/10.1016/0030-4018(76)90351-5
  15. Sodin L.G. Vozmozhnosti dostizheniya difraktsionnogo predela razresheniya pri rabote teleskopa v turbulentnoy atmosfere, Pis’ma v AZH, 1976, 2, P. 554–558.
  16. Knox K.T., Thompson B.J. Recovery of images from atmospherically degraded short-exposure photographs, Astrophys. J. Letters, 1974, 193, L45–L48. https://doi.org/10.1086/181627
  17. Bartelt H., Lohmann A.W., Wirnitzer B. Phase and amplitude recovery from bispectra., Appl. Opt, 1984, 23, P. 3121–3129. https://doi.org/10.1364/ao.23.003121
  18. Pluzhnik E.A. Primenenie metoda eksponentsial’nykh mnozhiteley pri vosstanovlenii difraktsionno-ogranichennykh izobrazheny protyazhennykh astronomicheskikh ob’ektov po dannym spekl-interferometrii., Astron. Zh, 1996, 73, P. 146–152.
  19. Kornienko Yu.V., Uvarov V.N. Nakoplenie signala pri nablyudenii astronomicheskogo ob’ekta skvoz’ turbulentnuyu atmosferu, Dokl. AN USSR, Ser. A, 1987, No 4, P. 60–63.
  20. Roddier F. Redundant versus nonredundant beam recombination in an aperture synthesis with coherent optical arrays, J. Opt. Soc. Amer, 1987, A4, No 8, P. 1396–1401. https://doi.org/10.1364/josaa.4.001396
  21. Born M., Vol’f E. Osnovy optiki, M.: Nauka, 1973, 720 p.
  22. Michelson A.A., Piese F.G. Measurement of the diameter of Alpha Orionis with interferometer, Astrophys. J, 1921, 53, P. 249–259. https://doi.org/10.1086/142603
  23. Kornienko Yu.V. Interferometrichesky podkhod k probleme videniya skvoz’ turbulentnuyu atmosferu, Kin. i fiz. neb. tel, 1994, 2, No 10, P. 98–106.
  24. Kornienko Yu.V. Ustoychivost’ interferometriche-skogo metoda formirovaniya izobrazheny k fazovym iskazheniyam volnovogo fronta, Dopovidi NAN Ukraїni, 2000, No 5, P. 78–82.
  25. Kornienko Yu.V., Leyferov V.A., Pugach V.V. Informatsionnaya effektivnost’ mnogoluchevogo interferometra pri nablyudenii ob’ekta skvoz’ neodnorodnuyu sredu, Khar’kov: In-t radiofiziki i elektron. NAN Ukrainy, 1997, 2, No 2, P. 132–136.
  26. Kornienko Yu.V., Pugach V.V. Informational Efficiency of a Multibeam Interferometer in the Observation of an Object through the Terrestrial Atmosphere, Kinematics and Physics of Celestial Bodies, 2000, No 3, P. 302–304.

Download PDF