Astronomical School’s Report, 2001, Volume 2, Issue 2, Pages 109–112

https://doi.org/10.18372/2411-6602.02.2109
Download PDF
UDC 523.11

Bremsstrahlung radiation from vicinity of an object without events horizon

Bannikova E.Yu.

Institute of Astronomy, Kharkiv V.N.Karazin National University, Ukraine

Abstract

It is follows from the observation data that the nonthermal radio source Sgr A* at the Galactic Center must be identified with a supermassive compact object with mass 2.6 x106 MSun. In paper (Verozub L.V., Kochetov A.Y, 2001) the existence of stable configurations of degenerated Fermi-gas without events horizon with masses 06 MSun - 109 MSun was argued. A spherically symmetric hydrodynamical accretion onto the object in the Galactic Center is considered in this paper. The profiles of the velocity, temperature and density in the falling gas have found taking into account of two-flow regime, dissipation processes, pressure of radiation and strong gravitation effects. The spectrum of the bremsstrahlung radiation is calculated. It is shown that the our results do not contradict the observation data.

Keywords:

References

  1. Bannikova E.Yu., Verozub L.V., Radiofizika i radioastronomiya, 2001, 6, No2, P. 89–92.
  2. Bannykova E.Yu., Visnyk Astronomichnoyi shkoly, 2001, 2, No1, P. 5–9. https://doi.org/10.18372/2411-6602.02.1005
  3. Bannikova E.Yu., Odessa Astronomical Publications, 2001, 14, P. 202–204.
  4. Shvartsman V.F., Astron.Zh, 1971, 71, P. 479–488.
  5. Coker R.F., Melia F., preprint astro–ph/9909411, 1999, P.1–33.
  6. Eskart A., Genzel R., Nature, 1996, 383, P.415–427. https://doi.org/10.1038/383415a0
  7. Eskart A., Genzel R., MNRAS, 1997, 284, P.576–598. https://doi.org/10.1093/mnras/284.3.576
  8. Ferrarese F., Ford H.C., Jaffe W., Astrophys.J, 1996, 470, P.678–690. https://doi.org/10.1086/177876
  9. Ghez A.M., Klein B.L., Morris M., et al., Astrophys.J, 1998, 509, P.678–684. https://doi.org/10.1086/306528
  10. Tsiklauri D., Violler R.D., Astrophys.J, 1998, 500, P.591–607. https://doi.org/10.1086/305753
  11. Ipser J.R., Price R.H., Astrophys.J, 1982, 255, P.654–673. https://doi.org/10.1086/159866
  12. Iyomoto N., Makishima K., MNRAS, 2001, 321, P.767–779. https://doi.org/10.1046/j.1365-8711.2001.04086.x
  13. Miyoshi M., Moran J., Herrnstein J. et al., Nature, 1995, 373, P.127–141. https://doi.org/10.1038/373127a0
  14. Narayan R., Mahadevan R., Grindlay J.E. et al., Astrophys.J, 1998, 492, P.554–568. https://doi.org/10.1086/305070
  15. Shapiro S.L., Astrophys.J, 1973, 180, P.531–546. https://doi.org/10.1086/151982
  16. Torres D.F., Capozziello S., Lambiase G., preprint astro–ph/0004064, 2000, P.1–31. https://doi.org/10.1103/physrevd.62.104012
  17. Tsiklauri D., Violler R.D., Astrophys.J, 1998, 500, P.591–607. https://doi.org/10.1086/305753
  18. Verozub L.V., Phys.Lett. A, 1991, 156, P.404–406. https://doi.org/10.1016/0375-9601(91)90716-l
  19. Verozub L.V., Astron. Nachr, 1996, 317, P.107–116. https://doi.org/10.1002/asna.2113170208
  20. Verozub L.V., Kochetov A.Y., Astron. Nachr, 2001, 322, 3, P.143–152. https://doi.org/10.1002/1521-3994(200107)322:3<143::aid-asna143>3.3.co;2-4

Download PDF