Astronomical School’s Report, 2001, Volume 2, Issue 2, Pages 70–85

https://doi.org/10.18372/2411-6602.02.2070
Download PDF
UDC 524.3

The evolution of nuclides

Komarov N.S.

Astronomical Observatory, Odessa National University, Ukraine

Abstract

In the brief review the modern problems of the further evolution nuclides after formation of easiest of them H, D, 3He, 4He and, probably, 7Li in 100 seconds after the Big Bang are discussed.The possible ways of evolution nuclides in result are considered: equilibrium process of simultaneous synthesis; nonequilibrium process of capture of neutrons; nuclear of synthesis. The “standard” curve of distribution of chemical elements, as result of evolution nuclides from the Big Bang till now is given. The results of determination of the contents of chemical elements in atmospheres of stars of different spectral types are discussed and the mechanisms of enrichment of interstellar and intergalactic environment by heavy elements are considered. The special attention is given to determination of the contents of isotopes, as most important tests of this or that process nucleosynthesis. The comparison of the modern data about the contents of nuclides in meteorites with the data received for atmospheres of stars is carried out and it has shown on significant distinctions, which can not be explained within the framework of the modern theory of nucleosynthesis.

Keywords:

References

  1. Bisnovatyy-Kogan G.S. Fizicheskie voprosy teorii zvezdnoy evolyutsii, M.: Nauka, 1989, 481 p.
  2. Boyarchuk A.A., Antipova L.I., Boyarchuk M.E., Savanov I.S. Sravnitel’nyy analiz soderzhaniya khimicheskikh elementov v atmosferakh krasnykh gigantovraznykh vozrastnykh grupp, Astron. Zh, 2001, 78, P. 349–358.
  3. Gopka V.F., Panchuk V.E., Komarov N.S. Soderzhanie skandiya, titana i elementov gruppy zheleza v atmosferakh γ Strely i α Tel’tsa. //Astrofiz. issled. (Izv.SAO), 1989, 27, P. 13–17.
  4. Gopka V.F., Komarov N.S., Mishenina T.V., Yuschenko A.V. Soderzhanie elementov r-, s-protsessov v atmosferakh K-gigantov, Pis’ma v Astron. Zh, 17, C.368–374.
  5. Komarov N.S. Kholodnye zvezdy-giganty, Odessa: Astroprint, 1999, 213 p.
  6. Fizichesky entsiklopedichesky slovar’, Izd-vo Sovetskaya entsiklopediya, 1966 – Vol. 5 – P. 186–191.
  7. Anders E., Grevesse N. Abundances of the Elements: Meteoritic and Solar //Geoch. et Cosmoch.Acta, 1989, 53, P.197–203. https://doi.org/10.1016/0016-7037(89)90286-x
  8. Burbidge E.M., Burbidge G.R., Fowler W.A., Houle F. Synthesis of the elements in stars, Rev.Mod.Phys, 1957 – 29, P.547–650. https://doi.org/10.1103/revmodphys.29.547
  9. Gray G.M., Compston W. Excess 26Mg in the Allende meteorites, Nature, 1974, 251, P.495–497. https://doi.org/10.1038/251495a0
  10. Grevesse N., Sauval J. Standard Solar Composition, Space Science Review.-1998, 85, P.161–174. https://doi.org/10.1023/a:1005161325181
  11. Harris M.J., Lambert D.L. The 12C/13C and 16O/18O rations in the solar photosphere, Month.Not.Roy.Astron.Soc, 1987, 224, P.237–255. https://doi.org/10.1093/mnras/224.1.237
  12. Harris M.J., Lambert D.L., Smith V.V. Oxygen isotopic abundances in evolved stars., Astrophys.J, 1988, 325, P.768–775. https://doi.org/10.1086/166047
  13. Merril P.W. Spectroscopic observations of stars of class S., Astrophys.J, 1952, 116, P.21–26. https://doi.org/10.1086/145589
  14. Lallansio J.C., Malaney N.A. Photofission production of technetium and synthetic asymptotic giant branch evolution, Astrophys.J, 1989, 347, P.989–997. https://doi.org/10.1086/168189
  15. Smith V.V., Lambert D.L. S-process-enriched cool stars with and without technetium: clues to asymptotic giant branch and binary star evolution, Astrophys.J, 1988, 333, P.219–226. https://doi.org/10.1086/166738
  16. Tomkin J., Lambert D.L. Magnesium isotopes and s-process elements in the barium star HR774., Astrophys.J, 1979, 227, P.209–219. https://doi.org/10.1086/156720
  17. Zinner E., Amari S. Asymptotic giant branch stars, IAU Symposium Iss. 191, 1999, P.59–68.

Download PDF