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A comparative analysis of the geometric
and dynamic shapes of the planetary satellites

S.A.Yasenev

National Aviation University

Determining of dynamic shapes of planetary satellites is today the urgent problem. The purpose of this paper is
to analyze the physical properties of satellites which we refer to planetoids.Planetary satellites are analyzed as
self-gravitating structures, and differences in their dynamic and geometric shapes are identified.

TTOPIBHSJIBHHH AHAJII3 TEOMETPHYHHX I JHHAMIYHHUX ®IFYP CYITYTHHKIB IIJIAHET, Scenes C.O. — Ha
Cb0200HIWHILl Denb aKkmyasbHOO cmae npobiema BU3HAUEeHHS OUHAMIYHUX picyp cynymHukie nianem. Mema danoi
cmammi noaseae y axanidi QidutHux sracmugocmetl Cynymukis, aki mu 8ioHocumo 0o naanemoidis. I[Iposodumocs
QHAAI3 CYNYMHUKIB NAQHEm AK CAMOSPAB8IMYOuUX YymeopeHs i BUSHAUAIOMbCS 8IOMIHHOCMI IX OUHAMIYHUX [ 2eome-
mpuuHux @ieyp.

CPABHHTEJIbHBIH AHAJIH3 TEOMETPHYECKHX H JHHAMHMYECKHX ®UIYP CIIYTHHKOB IIJAHET, fce-
nee C.A. — Ha cezo0nswHuLl OeHb akmyasvHoli cmanosumces npobaema onpedesenus OUHAMULECKUX ueyp cnymHu-
Ko naavem. Lleav danHol cmamou cocmoum 8 aHaAU3e GUIULECKUX CBOLCME CNYMHUKO8, KOMOpble Mbl OMHOCUM K
naarnemoudam. [Iposodumces aHaAU3 CRYMHUKO8 NAAHEM KAK CAMOSPABUMUPYIOUUX 00pa308anuli u onpedenstomcs
pasautus ux OUHAMUYECKUX U 2eOMEempPUiecKux guayp.

KuaroueBsbie cioBa: CIIYTHUKHU IJIAHET; Q)Hrypa; rpaBUTALLUOHHOE I10JI€; (LbOpMa; Mmacca.
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1.INTRODUCTION

Current astronomical observations carried out with the help of the ground and space means, led to the
discovery of a large number of planetary satellites — more than 180, and their number is increasing [5].

In the solar system there are massive satellites that keep their spherical shape by their own gravity, so
that is in their evolution gravitational field and proper rotation play a key role. We are interested in dynamic
shape of planetary satellites, which we can designate as “planetoids”, the self-gravitating entities. By their
own weight and its distribution, and gravitational power they hold their shape and strive, to keep it closer to
equilibrium. This demands a thorough and detailed study of their space and mechanical properties [2,4].

When considering the companion planet, its free surface in general is not the only object of study. In
the study of planetary satellites figures as self-gravitating structures, it is usually assumed that the density
is a function of increasing distance to the surface of the body. An individual satellite planet can be studied
as spatial, self-gravitating object that provides motion in the gravitational field of the planet. One of level
surfaces of gravity usually means the shape, and the body that is limited by the level surface, is called a
“planetoid”. However, all satellites are significantly influenced by their planet and this cannot be neglected.

2. ANALYSIS OF RESEARCHES AND PUBLICATIONS

A large number of planetary satellites have significant compression due to gravitational interaction with
their planets, so their gravitational potential is better described as ellipsoid. However, at the moment there
are a of problems related to establishment and operation of mathematical models of dynamic figures and
gravitational fields [6,7,10]. When modeling the gravitational field, scientists use various methods such as
Laplace expansion in number, expanding by Lame function, method of point masses; equigravitational figures
and other methods are also used [6,9,11].

As for the theory of figures in this direction, the most important methods were proposed by P. Laplace,
J.Lagrange, C. Maclaurin, K. Jacobi, P. Pitsetti, A. Clairaut, A. Legendre, K. Gauss, A. Lyapunov, A. Poincare,
N. Subbotin, D. Darwin, D. Jeans, J. Lowville and others. There are scientific researches in these issues made
by such scholars as K. Holshevnikov, A.Orlov, V.Panteleev, L. Lukyanov, H. Shyrmin, N.Pytyev, V. Titov,
[. Nikiforov, A.Martynov, A.Rubinov, L.Sokolov, V. Antonov, O.Zheleznyak, B.Kondratyev, D.Uchayev,
[. Prutov and others.
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3.STATEMENT OF THE MAIN MATERIAL

Let us assume that planetary satellites parameters will exceed the critical value for self-gravitating
structures [1] and as satellites of the planets rotate around their axes, their forms are not an exact sphere
and have some polar compression, that is equatorial radius R.q will be more polar Ry [8].

Let’s consider that the satellite is a nonchemical solid body moving around the planet. The planet is a
gravitational point. The companion form is described as a triaxial ellipsoid of inertia with major semi-axis
a>b>c and the main central moments of inertia A<B <C.

The stable figure of a celestial body has the property of being perpendicular to the vector sum of the
gravitational and centrifugal acceleration. The ratio of these values is as follows:

2 2 p3
wR_ ﬂy (1)
g mG
where w is angular velocity being, the main parameter which determines the shape of the satellite. The
eccentricity of the satellite is close to the value of the ratio of centrifugal and gravitational acceleration (see
Table 1):
ReqR— Ryl ~ wZRS. @
eq mG

As we can see from Table 1, geometric compression of satellites planets figures do not meet their dynamic
compression; this indicates that the satellite has additional effect. Obviously, the biggest impact on the shape
of the satellite will be the impact by its planet. Let’s consider this in detail. Let’s find ® is the potential of
all forces acting on the satellite that is constant surface potential with constant pressure and density. Since
this surface is a surface of constant potential: ® = const.

Table 1. Geometric and dynamic compression of planets satellites.

2p3
Name | Mass, 10° kg | R km | Ry, km | "0 | R km P,s <R
eq

Ganymede |  1481,90 | 263440 | 2 633,80 | 0,0002 | 2634,10 | 616 503,42 | 0,00019
Titan 134520 | 257800 | 257400 | 0,0016 | 2576,00 | 1374315,80 | 0,00004
Callisto 1077,00 | 2411,80 | 2408,80 | 0,0012 | 2410,30 | 1438077,16 | 0,00004
Io 189320 | 1830,00 | 181530 | 0,0080 | 1821,00 | 152424,12 | 0,00172
Moon 734,80 1738,14 | 173597 | 0,0012 | 1737,10 | 2354086,64 | 0,000008
Europe 480,20 1 561,40 | 1560,20 | 0,0008 | 1561,00 | 30596836 | 0,00050
Triton 214,00 1354,50 | 1352,50 | 0,0015 | 1354,00 | 50638583 | 0,00027
Titania 35,27 790,00 | 786,80 | 00041 | 788,50 | 75014378 | 0,00015
Oberon 30,14 764,00 | 758,80 | 00068 | 761,50 | 1159767.44 | 0,00006
Rhea 93,07 766,20 | 762,20 | 00052 | 764,50 | 38928895 | 0,00076
lapetus 18,06 74740 | 71240 | 00468 | 735,80 | 6835390,12 | 0,000003
Charon 15,80 614,00 | 59800 | 00261 | 606,00 | 55032047 | 0,00028
Ariel 13,50 581,10 | 577,50 | 00062 | 578,90 | 21713328 | 0,00180
Umbriel 11,75 586,10 | 583,30 | 0,048 | 584,30 | 35706362 | 0,00079
Dione 10,96 564,40 | 559,60 | 00085 | 562,00 | 23583087 | 000172
Tethys 6,18 538,40 | 526,30 | 00225 | 531,20 | 16267763 | 000542
Enceladus 1,10 956,60 | 248,30 | 00323 | 252,20 | 11804468 | 0,00619
Miranda 0.71 24040 | 232,90 | 0,0312 | 236,50 | 121749,73 | 0,00744

Let’s consider now the companion planet. Let’s assume that its shape is in equilibrium and the planet is
in its equatorial plane that we take the point on the body. In this case:

S =bg+ Pp+ P =const, (3)
where &5 — gravitational potential of the satellite, ®p — potential gravity of the planet, ®c — centrifugal
potential due to of the satellite’s own rotation.

The gravitational potential of the satellite:

GMS as (T . .
Pg Z Z 2n+ 5 ( ) X (@pm €OS MA+ by SIN MNPy, -sin | (4)

where G — the grav1tat10na1 constant, Ms — mass of the satellite, r — radius vector of the satellite shapes,
n and m — order and degree with coefficients of spherical functions, rp — radius of the sphere of relativity,
anm and by, — harmonic coefficients, and ¢ and A — longitude and latitude of the satellite, os — density of
relief, o, — average density of the satellite.

The gravitational potential of the planet:

-1
_ GMp GMp B 2¢  x*  yr 22
v s =M A\/l Tt ] (5)
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where G — the gravitational constant, Mp — mass of the planet, rp — distance from the satellite to the
centre of the planet, A — distance between the centers of the satellite and planet. In this condition the axis
z coincides with the axis of rotation of the satellite and the axis x is directed to the planet, and the axis y is
in the direction of motion.

By expanding 1/rp in a series of degrees
we obtain:

% % i and holding members of the second order of smallness,

GMp x 2x —yr—z
A 2A2 ) ’ ©
Let us find the potential of the centr1fuga force. Let the moon rotates on its axis, which is perpendicular
to the orbital plane with a constant angular velocity w, which is equal to the speed of its orbital motion €2,
that is w=1. Therl the motion of the satellite is a rotation with angular velocity w around the axis that runs
through the centre of mass of the system "satellite—planet” and which departs from the centre of the satellite
at the distance A-Mp/(Ms+Mp).
The potential of the centrifugal force will be the following:

Lo ( A x>2 L2
~w _
27 |\ T+ (s/Mp) !
We perform replacement of w? with its expression through the Kepler’s third law: w? = GMp(1 + )/ A3,
where pu=Ms/Mp.

®c = (7)

Then: ,
. GMp 1 X x“+y
Pc=—3 [2(1+u) At aAr ] ®)
When adding ®p and ®¢, we obtain:
_ GMp 1 GMp ., 5 2 GMp, 5
Prtbe="% (1+2(1+u)> gas (3% —2) gy W), ®)

The sum (9) is a disturbing potential, which determines the deviation surface (figure) of the satellite from
the sphere.

We add to (9) member A(x2+y?+2?) , which by virtue of symmetry may cause slight overall expansion of
the satellite, but not significantly affecting its shape. The parameter A is selected so that perturbing potential
can be expressed as second order harmonic functions: V2(®p+®¢ +Ar?) =0.

Performing differentiation, we obtain:

QGAAS/IP +6A=0, where A= —%

Now the disturbing potential is represented as:

(I)gen:‘I)P‘F‘I)(,‘-i‘)\l’Q:GfP (14‘2(1{’_#)) (;]Xg ? Mgfsp(x2+y2) GAISD(SX - )’ (10)
or bearing in mind that both the first term (constant), and the third one (small) can be rejected, we write
(10) as:

%m?—z?) ?Xg’ 2 (éfg’ (7x2 — 242 — 52%). (11)
The surface of the satellite is acted upon by the disturbing potential and becomes deformed. Deformation
is expressed by harmonic function of the second order Jo:
r=ro(l+¢ek), (12)
where r — radius vector shapes of the satellite, rp — radius of the sphere of relativity, ¢ — ratio o, /0s (o —
average density of the satellite, o — density of relief), J, — dynamic parameter that characterizes flattening
figure of the satellite.
Confining harmonic functions of the second order, we obtain from (1) the potential of a homogeneous

q)gen =

spheroid:
B GMS 3 6]21’3
We introduce (12) into the expression for the potential spheroid (13), then:
GMs 3 ch GMs 3_ chrg
= 1+ 1 —¢lJ —— . 14
ro(1+ch) [ 5 (1+512)2] 0 {( 2) ( 5 ro(1+e/)? (14

When adding capacity satellite (14) and the disturbing potential (11), we obtain the equation of the tiered
moon’s surface:

b=

GMP 2 9 9 GMS 3 Efgrg .
GA3 (7x* =2y~ —bz")+ P x | (1—¢ky) 1+5r0(1+512)2 = const. (15)
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Neglecting the small second order and assuming constant equal GMs/ry , we determine from (15) the

value ey :
5 Mp 1§ (7x*—2y>—52%)

ST I (19

Let us enter the value in (12). Now equation of the tiered moon’s surface up to the second harmonic
order will look like: s ) ) )
5 Mp ry (Tx*—2y~—5z°)

= I+ —=—"=—"|. 17

’ r°<+12M5A3 w2 ()

Consistently stating in (17) that x =ry, y =rp,2=rp let us find semiaxes of the satelloid (planetoid) [3]:

3
b=r0(1—10M’”0), (18)

1 25 Mp I’g
c=rn ( 12 Ms A3> '

It follows that the largest satellite axis is the axis directed to the planet, the second largest axis is
that which is directed toward the orbital motion of the satellite (on the same surface of the first one and
perpendicular to it), and the third axis between the poles is the smallest.

Substituting the values rn, Mp, Ms, A, we obtain numerical values of semiaxes, polar and equatorial
compression of planetoids (see Table 2).

These values do not coincide with the results of measurements, indicating the unequal distribution of
density in planetary satellites. That is the figures of planetary satellites differ from hydrostatic equilibrium
shapes.

For some simple models with the help of mathematical analysis methods there have been already found
correlations between the degree of attending at the poles and parameters, characterizing the density distribu-
tion [7]. For example, the rotational body with uniform density with one axis of symmetry passing through
the poles, known as Maclaurin spheroids, rotating bodies with mass concentrated at a single point (in the
centre of the body) are variations of Roche models. All existing forms of planetary satellites are between
these two options.

4.CONCLUSIONS

1. It was found that the geometric shape of planetary satellites compression is out of accord with their
dynamic compression, indicating uniform density distribution inside the satellite.

2. Due to the planet’s gravitational interaction with the satellite there arise tidal forces that distort the
dynamic equilibrium shape of the satellite and the satellite forms contribute to the emergence of a triaxial
ellipsoid whose axis is the largest oriented toward the planet, the second largest one in the direction of orbital
motion, the third one — between the poles.

3. A comparison of dynamic and geometric characteristics of planetary satellites gave us an idea of
potential deformation of shapes. We can use these data to get an idea of the distribution of the matter inside
the satellites and thus the knowledge of their internal structure.
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