Вісник Astronomical Астрономічної School's школи Report

ISSN 1607–2855

Том 9 • № 1 • 2013 С.6-9

УДК 524.3-333

Обобщенная шкала эффективных температур звезд главной последовательности и субзвезд

М.А. Бабенко¹, В.А. Захожай²

¹Херсонский государственный университет

²Харьковский национальный университет им. В.Н. Каразина

Получена обобщенная шкала эффективных температур (T_{eff}) для субзвезд и звезд главной последовательности на интервале спектральных типов $Sp = O8V \div T9,5V$. Определена зависимость T_{eff} от спектрального кода C_{Sp} для $Sp = O8 \div T9,5$. Выполнена аппроксимация зависимости $\lg T_{eff} - C_{Sp}$ полиномом пятой степени, относительные ошибки свободных членов которых меньше 17%.

УЗАГАЛЬНЕНА ШКАЛА ЕФЕКТИВНИХ ТЕМПЕРАТУР ЗІР ГОЛОВНОЇ ПОСЛІДОВНОСТІ ТА СУБЗІР, Бабенко М.О., Захожай В.А. — Отримано узагальнену шкала ефективних температур (T_{eff}) для субзір і зір головної послідовності на інтервалі спектральних типів $Sp = O8V \div T9,5V$. Визначена залежність T_{eff} від спектрального коду C_{Sp} для $Sp = O8 \div T9,5$. Виконана апроксимація залежності lg $T_{eff} - C_{Sp}$ поліномом п'ятого ступеня, відносні помилки вільних членів яких менше 17%.

SUMMARIZED EFFECTIVE TEMPERATURES SCALE OF MAIN SEQUENCE STARS AND SUBSTARS, by Babenko M.A., Zakhozhay V.A. — The generalized scale of effective temperatures (T_{eff}) for substars and main sequence stars in the interval spectral types $Sp = O8V \div T9,5V$. Determined the dependence of effective temperatures T_{eff} from spectral code C_{Sp} for $Sp = O8 \div T9,5$. Approximation executed depending $\lg T_{eff} - C_{Sp}$ polynomial the fifth power, the relative error free members are less than 17%.

Ключевые слова: звезды; субзвезды; шкала эффективных температур.

Key words: stars; substars; scale of effective temperatures.

Эффективная температура $(T_{\rm eff})$ — один из основных параметров звезд и субзвезд. Она может быть определена прямыми и косвенными методами [3]:

- по измеренным интегральным потокам излучения (в широком интервале длин волн) и угловым диаметрам;
- из анализа спектральных линий (по скачку Бальмера, глубинам линий и пр.);
- на основании связи между потоками излучения и показателем цвета);
- по статистическим соотношениям «эффективная температура показатель цвета», «эффективная температура — спектральный тип» и т. д.

Не смотря на обилие перечисленных методов, данные об эффективных температурах близких к Солнцу звезд, как правило, не приводятся (см. каталоги [1, 9, 17, 18]). По последним данным [2], в радиусе 10 пк от Солнца насчитывается 360 звезд главной последовательности и субзвезд. Из них только для 35 звезд измерены угловые диаметры [1], что существенно ограничивает расчет прямых интегральных потоков излучения, а, следовательно, и прямого метода измерения эффективных температур звезд. Для субзвезд такая методика вовсе не применима.

Среди косвенных методов определения эффективных температур звезд и субзвезд наиболее эффективными являются статистические методы. Главным преимуществом здесь является то, что их спектральные типы определены достаточно надежно.

В последние четверть века по прямым данным построены несколько шкал эффективных температур для звезд и субзвезд в следующих диапазонах спектральных типов: O8–F6 [15], F6–G5 [8], G0–K7 [6], L0–T8 [11]. Однако эти шкалы не были систематизированы к единой шкале эффективных температур. Целью предлагаемой работы является построение шкалы эффективных температур для звезд главной последовательности и субзвезд статистическим методом.

За основу были выбраны проведенные за последние 10 лет измерения эффективных температур звезд и субзвезд, выполненные прямыми, спектральными и фотометрическими методами. По измеренным интегральным потокам излучения в широком интервале длин волн и угловым диаметрам [7, 8] и из анализа глубины спектральных линий H₂O, Na I, K I [14] вычислены эффективные температуры звезд. Методом анализа глубины спектральных линий Li, Na, K, Cs, Rb [5] и по связи между потоками излучения и по-казателем цвета [10, 13, 16] определены эффективные температуры субзвезд. Такая выборка составила

Таблица 1. Шкала эффективных температур. Указаны: Sp — спектральный тип; $T_{\rm eff}$, ΔT — среднее значение эффективной температуры и ее погрешность, соответственно; символом «:» помечены те спектральные типы, значения эффективных температур которых получены в результате интерполяции или экстраполяции (см. Т9,5) — прямые значения их отсутствуют в литературе.

Sp	$T_{\rm eff},~{ m K}$	Δ_T, \mathbf{K}	Sp	$T_{\rm eff},~{ m K}$	Δ_T, \mathbf{K}	Sp	$T_{\rm eff},~{\rm K}$	Δ_T, \mathbf{K}	Sp	$T_{\rm eff},~{ m K}$	Δ_T, K
08	35700	1700	A8,5:	7097	10	G9	5310	10	M9,5	2300	10
O8,5	35300	2100	A9	7020	10	G9,5:	5280	10	L0:	2290	10
O9	34500	1300	A9,5:	6960	10	K0	5250	10	L0,5:	2250	10
O9,5	32800	1200	F0	6900	10	K0,5:	5150	10	L1	2230	80
B0	31600	200	F0,5:	6850	10	K1	5110	10	L1,5	2200	10
B0,5	30000	2200	F1	6800	10	K1,5:	5010	10	L2	2060	60
B1	26600	3700	F1,5:	6760	10	K2:	4940	10	L2,5	2030	10
B1,5	25300	2200	F2	6700	10	K2,5:	4880	10	L3	1950	10
B2	22400	1400	F2,5:	6660	10	K3	4840	60	L3,5	1870	10
B2,5	20500	1600	F3	6600	10	K3,5:	4740	10	L4	1800	10
B3	18500	1400	F3,5:	6570	10	K4:	4680	10	L4,5	1745	10
B3,5:	17900	110	F4	6520	10	K4,5:	4610	10	L5	1650	30
B4	17100	390	F4,5:	6480	10	K5	4460	10	L5,5	1620	10
B4,5:	16000	110	F5	6430	10	K5,5:	4470	10	L6	1570	10
B5	15300	750	F5,5:	6380	10	K6:	4410	10	L6,5	1520	10
B5,5:	14620	30	F6	6340	10	K6,5:	4340	10	L7	1470	10
B6	14340	570	F6,5:	6290	10	K7	4250	10	L7,5	1450	10
B6,5:	13600	70	F7	6250	10	K7,5:	4210	10	L8:	1490	10
B7	12910	390	F7,5:	6190	10	K8:	4140	10	L8,5:	1470	10
B7,5:	12690	110	F8	6160	10	K8,5:	4070	10	L9:	1460	10
B8	12120	620	F8,5:	6100	10	K9:	4000	20	L9,5:	1440	10
B8,5:	11660	60	F9	6070	10	K9,5:	3940	20	T0:	1430	10
B9	11020	500	F9,5:	6000	10	M0	3890	40	T0,5	1380	10
B9,5	10340	470	G0	5920	90	M0,5	3790	10	T1	1390	10
A0	9530	430	G0,5:	5890	10	M1	3750	110	T1,5	1400	10
A0,5:	9230	10	G1	5880	10	M1,5	3630	10	T2	1390	10
A1	8940	30	G1,5	5830	10	M2	3540	40	T2,5	1380	10
A1,5:	8760	10	G2	5780	10	M2,5	3460	10	T3	1360	10
A2	8550	20	G2,5	5670	10	M3	3400	60	T3,5	1330	10
A2,5:	8370	10	G3	5650	60	M3,5	3250	50	T4	1290	10
A3	8210	10	G3,5:	5640	10	M4	3200	60	T4,5	1240	10
A3,5:	8050	10	G4	5610	10	M4,5	3100	10	T5	1190	10
A4	7930	40	G4,5:	5580	10	M5	2990	40	T5,5	1130	10
A4,5:	7790	10	G5	5540	10	M5,5	2880	70	T6	1060	10
A5	7670	10	G5,5:	5520	10	M6	2800	10	T6,5	990	10
A5,5:	7570	10	G6	5480	10	M6,5	2750	70	T7	920	10
A6	7480	20	G6,5:	5470	10	M7	2730	40	T7,5	840	10
A6,5:	7390	10	G7	5430	10	M7,5	2670	70	T8	770	10
A7	7300	30	G7,5:	5420	10	M8	2600	40	T8,5:	690	10
A7,5:	7230	10	G8	5410	20	M8,5	2400	80	T9	680	80
A8	7150	10	G8,5:	5350	10	M9	2380	130	T9,5:	500	30

393 звезды с известными эффективными температурами $T_{\rm eff}$ и спектральными типами Sp в интервале от O8 до T9. При этом практически для всех спектральных типов существовало несколько звезд с близкими значениями эффективной температуры. Для некоторых спектральных типов не удалось найти соответствующие им значения эффективной температуры. Нами были определены среднее взвешенные значения эффективных температур для каждого спектрального типа с шагом в 0,5, представленные в табл. 1.

Каждому спектральному типу можно поставить в соответствие спектральный код $C_{\rm Sp}$ [1]. Тогда шкалу эффективных температур можно представить в графическом виде (рис. 1), где нанесены значения эффективных температур O8, B0, B5, A0, A5 и т. д. для спектральных кодов в интервале $C_{\rm Sp} = 8-89,5$ с шагом $\Delta C_{\rm Sp} = 5$ начиная с $C_{\rm Sp} = 10$ по $C_{\rm Sp} = 90$.

Шкала эффективных температур (в виде зависимости $\lg T_{\rm eff} - C_{\rm Sp}$), аппроксимированная полиномом пятой степени, имеет следующий вид:

$$\lg T_{\rm eff} = \alpha_0 + \alpha_1 C_{\rm Sp} + \alpha_2 C_{\rm Sp}^2 + \alpha_3 C_{\rm Sp}^3 + \alpha_4 C_{\rm Sp}^4 + \alpha_5 C_{\rm Sp}^5, \tag{1}$$

где:

 α_0

$$=5,6490\pm0,0555;$$
 $\alpha_1 = -0,1690\pm0,0086;$

ISSN 1607-2855. Вісник Астрономічної школи, 2013, том 9, № 1

Рис. 1. Шкала эффективных температур звезд главной последовательности и субзвезд (интервал спектральных кодов $C_{\text{Sp}} = 8 - 89$ соответствует интервалу спектральных типов O8-T9,5)

Рис. 2. Шкала эффективных температур, приведенная в линейно-логарифмическом масштабе и результат ее аппроксимации выражением (1) — сплошная линия

$\alpha_2 = (6, 1578 \pm 0, 4659) \cdot 10^{-3};$	$\alpha_3 = -(1,0873 \pm 0,1120) \cdot 10^{-4};$
$\alpha_4 = (8,9727 \pm 1,2305) \cdot 10^{-7};$	$\alpha_5 = -(2,8901 \pm 0,5030) \cdot 10^{-9}.$

Как видно, относительные ошибки свободных членов составили ≤ 17%.

Выполненная аппроксимация для звезд главной последовательности и субзвезд в интервале спектральных типов от O8 до T9,5 в линейно-логарифмическом масштабе на рис. 2 показана сплошной линией.

Из рис. 2 следует, что наибольшее согласие аппроксимированных данных с расчетными достигается для интервала спектральных типов A-L. Это типичные представители звезд и субзвезд, которые находятся в области ближе 10 пк от Солнца [2].

- 1. Захожай В.А. Ближайшие звезды // Вестн. Харьк. ун-та. 1979. № 190, вып. 14: Физика Луны и планет. Фундаментальная астрометрия. — Харьков. — С. 52–77.
- 2. Захожай В.А., Бабенко М.А. Новая версия каталога ближайших звезд и субзвезд // Изв. ГАО в Пулкове. 2013. № 220. Труды Всероссийской астрометр. конф. «Пулково-2012». С. 367-372.
- 3. *Сахибулин Н.А.* Методы моделирования в астрофизике. II. Определение фундаментальных параметров звезд. Казань: Фэн, 2003. 389 с.
- 4. Babenko M., Zakhozhay V. New Stellar Radii, The Calculation of the Direct Methods // Odessa Astron. Publicat. 2012. 25, № 2. P. 156-158.
- Basri G., Mohanty S., Allard F., et al. An Effective Temperature Scale for Late-M and L Dwarfs, from Resonance Absorption Lines of Cs I and Rb I // The Astrophysical Journal. – 2000. – 538, Is. 1. – P. 363–385.
- Bell R.A., Gustafsson B. The effective temperatures and colours of G and K stars // Monthly Notices of the Royal Astronomical Society. – 1989. – 236. – P. 653–707.

- 7. *Belle G.T., Braun K.* Directly Determined Linear Radii and Effective Temperatures of Exoplanet Host Stars // The Astrophysical Journal. 2009. **694**, Is. 2. P. 1085–1098.
- Boyajian T.S., McAlister H.A., Belle G., et al. Stellar Diameters and Temperatures. I. Main-sequence A, F, and G Stars // The Astrophysical Journal. – 2012. – 746, Is. 1. – P. 101–127.
- 9. Gliese W. Catalogue of nearby stars // Karlsruhe: Braun. 1969. 118 p.
- Golimowski D.A., Leggett S.K., Marley M.S., et al. L' and M' Photometry of Ultracool Dwarfs // The Astronomical Journal. – 2004. – 127, Is. 6. – P. 3516–3536.
- Kirkpatrick J.D. New Spectral Types L and T // Annual Review of Astronomy & Astrophysics. 2005. 43, Is. 1. - P. 195-245.
- Martins F., Schaerer D., Hillier D.J. On the effective temperature scale of O stars // Astronomy and Astrophysics. - 2002. - 382. - P. 999-1004.
- Nakajima T., Tsuji T., Yanagisawa K. Spectral Classification and Effective Temperatures of L and T Dwarfs Based of Near-Infrared Spectra // The Astrophysical Journal. - 2004. - 607. - P. 474-498.
- Rojas-Ayala B., Covey K.R., Muirhead P.S., et al. Metallicity and Temperature Indicators in M Dwarf K-band Spectra: Testing New and Updated Calibrations with Observations of 133 Solar Neighborhood M Dwarfs // The Astrophysical Journal. – 2012. – 748, Is. 2. – P. 93–125.
- 15. *Theodossiou E., Danezis E.* The stellar temperature scale for stars of spectral types from O8 to F6 and the standard deviation of the MK spectral classification // Astrophysics and Space Science. 1991. **183**, № 1. P.91–115.
- 16. *Vrba F.J., Henden A.A., Luginbuhl C.B., et al.* Preliminary Parallaxes of 40 L and T Dwarfs from the US Naval Observatory Infrared Astrometry Program // The Astronomical Journal. 2004. **127**, Is. 5. P. 2948-2968.
- 17. Wooley R., Pocock S.B., Epps E.A., Flinn R. Catalogue of stars within twenty-five parsecs of the Sun // Roy. Observ. Bull. 1970. № 5 228 p.
- Zakhozhaj V.A. Catalogue of stars within ten parsecs of the Sun. 1996. URL: http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=V/101

Поступила в редакцию 29.08.2013