Вісник Astronomical Астрономічної School's школи Report

ISSN 1607-2855

Том 7 • № 1 • 2011 С. 78 – 87

УДК 523.3

Оценки пористости верхнего слоя грунта для некоторых деталей Луны

Ю.Е. Навроцкий

Черниговский национальный педагогический университет имени Т.Г.Шевченко

Предполагая, что индикатриса рассеяния света на всех фазовых углах (включая область оппозиции α < 5°) изменяется за одинаковым законом, определены значения параметра д для различных участков на поверхности Луны. Значение параметра д заключено в пределах 0,2 ≤ g ≤ 0,7, а параметра р − 0,793 ≤ p ≤ 0,968.

ОЦІНКА ПОРИСТОСТІ ВЕРХНЬОГО ШАРУ ГРУНТУ ДЛЯ ДЕЯКИХ ДЕТАЛЕЙ МІСЯЦЯ, Навроцький Ю.Є. — Зробивши припущення, що індикатриса розсіювання світла на всіх фазових кутах (включаючи і область опозиції $\alpha < 5^{\circ}$) змінюється за однаковим законом, було визначено параметр д для різних ділянок на поверхні Місяця. Значення параметру д отримали в межах $0,2 \leq g \leq 0.7$, а $0.793 \leq p \leq 0.968$.

ESTIMATING THE POROSITY OF THE UPPER SOIL LAYER FOR SOME DETAILS OF THE MOON, by Navrotskiy Yu. – Assuming that the indicatrix of light scattering at all phase angles (including the region of opposition $\alpha < 5^{\circ}$) varies for the same law, the values of the parameter g for different areas on the lunar surface. The value of g lies in the range $0.2 \le g \le 0.7$ and $0.793 \le p \le 0.968$.

Ключевые слова: физические свойства поверхности Луны; индикатриса рассеяния; пористые свойства вещества. **Key words:** physical properties of the lunar surface; indicatrix of light scattering; porous properties of matter.

1. ВВЕДЕНИЕ

В середине 50-х годов 20-го столетия Герелс и Коффен [3] обнаружили так называемый эффект оппозиции в блеске деталей лунной поверхности, для объяснения которого Хапке [4,5] предложил модель затемнения частиц (теневой механизм), основным параметром в которой является фактор упаковки частиц *g*. Поскольку в этой модели учитывалось только однократное рассеяние, то Ирвин [6] модернизировал этот закон и предложил приближенно учитывать многократное рассеяние. К сожалению, при выводе формул здесь была допущена погрешность, которую позже исправил Э.Яновицкий [2] и предложил учитывать ещё полупрозрачность частиц *к*.

В работе В.Мороженко и Э.Яновицкого [2] анализировались наблюдательные данные Герелса [3], усреднённые для всех деталей, как для углов оппозиции, так и для фазовой зависимости блеска в широком диапазоне фазовых углов. Были определенны ещё и значения индикатрисы рассеяния частиц $\chi(\alpha)$, значение первого коэффициента разложения $\chi(\alpha)$ в ряд по полиномам Лежандра x1 (который характеризует степень вытянутости индикатрисы рассеяния), а также альбедо однократного рассеяния ω .

Позже В.Ботвинова и Л.Лисина [1] провели такие оценки для каждой из наблюдаемых Герелсом [3] деталей. При этом были получены среднее значения параметра g = 0,25, которые отвечают неправдоподобно высоким значениям пористости p = 0,956 ($p = 1 - 0.354g^{3/2}$).

В то же время за данными анализа датчиков динамических нагрузок на опоре посадочных мест КА Сервеер-1 и Сервеер-6 [7,8] были получены значения $p = 0.6 \div 0.8$ на глубинах 5 - 10 мм и p = 0.35 на глубинах 5 - 10 см.

Мы считаем, что одной из причин этого может быть то, что в [1, 2] принималось на интервале фазовых углов $\alpha < 5^{\circ}$, $\chi(\alpha)$ не зависит от угла фазы, что противоречит действительности. Поэтому мы решили снова вернуться к этой проблеме, но при анализе учитывать изменение $\chi(\alpha)$, за тем же законом, что и для $\alpha > 5^{\circ}$. Если учесть, что в работе [2] показано, что добавка в интенсивности за счет многократного рассеяния практически не влияет на форму эффекта оппозиции, то для упрощения расчётов мы будем учитывать только однократное рассеяние.

Кроме того, кроме наблюдений Герелса [3], мы проанализируем данные, полученные КА «Аполлон-8» [12] и «Клементина» [9, 10, 11, 13]. Однако прежде, чем к этому приступить, мы опишем модель работы А.Мороженко и Э.Яновицкого.

2. МОДЕЛЬ ОТРАЖЕНИЯ СВЕТА ПОВЕРХНОСТЬЮ ЛУНЫ

Было много попыток описать закон отражения солнечного света поверхностью Луны. Наиболее точно описывает этот закон формула, полученная А.Мороженко и Э.Яновицким [2]. В этой формуле был учтен эффект оппозиции. Моделью поверхности является модель Хапке [4, 5].

Если учитывать рассеяния только первого порядка, тогда формула отражения имеет следующий вид:

$$I_1(\alpha, g) = \frac{\lambda \cdot S}{4} \cdot \frac{\zeta \cdot \chi(\pi - \alpha)}{\eta + \zeta} \cdot \exp\left[\frac{\kappa^2}{\pi} \left(\frac{g}{2}\right)^{3/2} \operatorname{ctg} \frac{\alpha}{2}\right] J(y), \tag{1}$$

где λ — альбедо однократного рассеяния частицы, χ — индикатриса рассеяния частицы, ζ , η — косинусы углов падения i и отражения ε соответственно,

$$J(y) = y \cdot \int_{0}^{1} e^{-y \cdot s(x)} dx + e^{-y},$$

$$y = \frac{3}{8\sqrt{2}} g^{3/2} \cdot \kappa \cdot \left(\frac{1}{\zeta} + \frac{1}{\eta}\right) \cdot \left(1 + \zeta \eta \operatorname{cosec}^{2} \frac{\alpha}{2}\right)^{1/2},$$

$$s(x) = \left(1 - \frac{\kappa}{2} + \frac{\kappa}{\pi} \arcsin x\right) x - \frac{\kappa}{3\pi} \sqrt{1 - x^{2}} \cdot (2 + x^{2}),$$

g — фактор упаковки, κ — поперечник ослабления, который указывает, какая часть светового потока, попавшая внутрь контура частицы, уходит из параллельного пучка, поглощаясь и рассеиваясь в стороны (для полностью непрозрачных частиц $\kappa = 1$).

Фактор упаковки определяет пористость грунта, связанный с плотностью рассматриваемой области *р*, таким соотношением

$$g = 2\left(\frac{\rho}{\rho_0}\right)^{1/3}$$

где ρ_0 — плотность сплошного грунта рассматриваемой области на поверхности Луны, а пористость верхнего слоя $p = 1 - 0.354 g^{3/2}$.

Определение фактора упаковки *g* для различных деталей лунной поверхности с использованием формулы (1) является целью данной статьи.

3. ОПРЕДЕЛЕНИЕ ФАКТОРА УПАКОВКИ

Разные участки лунной поверхности имеют свои фотометрические особенности, что в свою очередь говорит об индивидуальных физико-химических свойствах изучаемых областей, в том числе и разные значения фактора упаковки.

Используя результаты наблюдений для фазовых углов $\alpha < 5^{\circ}$ и сравнивая их с законом отражения (1) для различных значений g, можно добиться их хороших совпадений, тем самим определить фактор упаковки рассматриваемой области. Такую работу проделали В.Ботвинова, Л.Лисина [1]; используя наблюдения Герелса [3], авторы получили значения g, предполагая, что индикатриса рассеяния χ на интервале фазовых углов $0^{\circ} - 5^{\circ}$ постоянная.

В настоящей работе для определения фактора упаковки g было сделано следующее:

1) В формуле (1) принималось, что индикатриса рассеяния χ на всех фазовых углах (включая и область оппозиции $\alpha < 5^{\circ}$) изменяется по одинаковому закону. Чтобы определить индикатрису рассеяния для конкретных значений фазовых углов в области оппозиции, была определена интерполяционная формула для значений индикатрисы рассеяния, взятых из [2]. По этой формуле определялись значения индикатрисы для фазовых углов $\alpha < 5^{\circ}$ (см. рис. 1, табл. 1).

2) Определялось отношение $L = \frac{I_1(\alpha, g)}{I_1(\alpha, g)}$, где $I_1(\alpha, g)$ — зависимость (1) для фазового угла α , $I_1(\alpha_0, g)$ — значение зависимости (1) для углов фазы $\alpha_0 = 0^\circ$, $\alpha_0 = 1^\circ$, $\alpha_0 = 1,5^\circ$.

3) На график наносились значения зависимости (1), отнесенные к нулевой фазе ($L = \frac{I_1(\alpha, g)}{I_1(\alpha_0, g)}$, $\alpha_0 = 0^{\circ}$ для [3]) при сравнении наблюдений по Герелсу [3] (рис. 2, 3). Для данных наблюдений спутника «Клементина» и «Аполлон-8» [9, 10, 11, 12, 13] (рис. 4), к фазовым углам 1°; 1,5° ($\alpha_0 = 1^{\circ}$; 1,5° для [9, 10, 11, 12, 13]).

Добиваясь наилучшего совпадения экспериментальных данных и зависимости L при различных g для фазовых углов $\alpha < 5^{\circ}$, были определенны значения фактора упаковки для выбранных участков на Луне.

Все расчеты проводились на персональном компьютере с использованием программы MathCad.

Результаты сравнения изображены на рисунках 2, 3, 4, а значения параметра g — в таблицах 2,3.

4. АНАЛИЗ РЕЗУЛЬТАТОВ

Если не учитывать рассеяния света высших порядков и предположить, что частицы полностью непрозрачны ($\kappa = 1$), тогда формула (1) описывает поведение отражательной функции при малых фазовых углах.

Изменяя значение параметра g можно добиться наилучшего совпадения теоретической зависимости (1) с наблюдательными данными для фазовых углов $\alpha < 5^{\circ}$. При этом выбранные значения g фактора упаковки будет наиболее вероятным значением относящемуся к тому или иному участку на Луне.

ISSN 1607-2855. Вісник Астрономічної школи, 2011, том 7, №1

Таблица 1				1	Таблица 2				
α	$\chi(\pi-\alpha)$	α	$\chi(\pi-\alpha)$	Деталь	λ	β	g	Источник	
0°	3,3	90°	0,82	Blagg	1,30	1,40	0,5	[11]	
5°	3,21	100°	0,71	Godin	9,50	1,00	0,3	[11]	
10°	2,97	110°	0,62	W. Procellarum reg.	-620	60	0,5	[10]	
20°	2,53	120°	0,53	Carpathian Mountains	-240	200	0,5	[10]	
30°	2,13	130°	0,45	Sinus Medii	1,30	0.50	0,7	[9]	
40°	1,82	140°	0,43	Sinus Medii	1,30	1,30	0,7	[9]	
50°	1,57	150°	0,38	Sinus Medii	3,90	1,30	0,35	[13]	
60°	1,36	160°	(0,30)	Mare Fekunditatis	48,70	1,40	0,55	[13]	
70°	1,17	170°	(0,18)	Integral phase function			0,1	[11]	
80°	0,99	180°	—	Apollo 8			0,4	[12]	

таолица с	Та	блица	3
-----------	----	-------	---

				g		
Деталь	λ	β	Результаты	Наши результаты		
			из [1]	1956-57 гг.	1963–64 гг.	
Center of Tycho	$-11^{\circ}17'$	$-43^{\circ}18'$	0,1	0,5	0,5	
Copernicus	$-20^{\circ}08'$	$10^{\circ}11'$	0,1-0,2	0,5	0,6	
East of Clavius D	$-10^{\circ}03'$	$-58^{\circ}41'$	0,1-0,2	0,5	0,5	
Near Plato	$-07^{\circ}20'$	$54^{\circ}36'$	0,2-0,3	0,4	0,4	
Near Hortensius	$-29^{\circ}21'$	$07^{\circ}20'$	0,2-0,3	0,2	0,2	
Wood's Region	$-51^{\circ}17'$	$29^{\circ}15'$	0,2-0,3	0,2	0,2	
M.Serenitatis East	$26^{\circ}50'$	$28^{\circ}02'$	0,3	0,3	0,3	
Mare Serenitatis	$21^{\circ}59'$	$25^{\circ}03'$	0,3	0,4	0,4	
M. Tranquilitatis	39°10′	$11^{\circ}34'$	0,3	0,35	0,35	
Mare Crisium	$53^{\circ}14'$	$17^{\circ}23'$	0,3	-	0,5	
Mare Imbrium	$-17^{\circ}44'$	$46^{\circ}08'$	0,35	0,45	0,45	
Center of Plato	$-09^{\circ}18'$	$51^{\circ}28'$	0,4	0,2	0,2	
Mare Humorum	$-40^{\circ}38'$	$-21^{\circ}40'$	0,5	-	0,25	

Добиваясь наилучшего совпадения зависимости (1) с данными наблюдений на углах фазы $\alpha < 5^{\circ}$, мы не обращали внимание на несовпадение при фазовых углах $\alpha > 5^{\circ}$ (формула (1) описывает поведение фазовой зависимости при фазовых углах $\alpha < 5^{\circ}$), для которых нужно учитывать рассеяния высших порядков.

Для некоторых участков (Near Hortensius, Mare Serenitatis, Near Plato, Mare Imbrium, Copernicus — рис. 2, 3) можно отметить совпадение зависимости (1) для всех наблюдаемых фазовых углов.

На рис. 4 показаны результаты сравнения зависимости (1) с данными наблюдений, полученные спутниками «Клементина» и «Аполлон-8». Ценность этих наблюдений в том, что они проводились при малых фазовых углах (вплоть до нулевой). Для таких областей, как Godin и Blagg, наблюдения проводились для различных длин волн, поэтому для этих участков проводились усреднения по наблюдаемым длинам волн.

Среднее значение параметра g всех рассмотренных участков на Луне получилось равное g = 0,4, что приводит уже к более приемлемым значениям p, особенно если учесть, что полученные нами результаты

Рис. 1. Точками обозначены значения индикатрисы из табл. 1. Сплошная линия — по интерполяционной формуле.

Рис. 2. Кривые изменения зависимости $L = \frac{I_1(\alpha, g)}{I_1(0, g)}$ (сплошные линии) по наблюдениям на станциях Индиана и Флагстофф (точки) для полностью непрозрачных частиц ($\kappa = 1$).

Рис. 3. Кривые изменения зависимости $L = \frac{I_1(\alpha, g)}{I_1(0, g)}$ (сплошные линии) по наблюдениям на станции Каталина (точки) для полностью непрозрачных частиц ($\kappa = 1$).

Рис. 4. Кривые изменения зависимости $L = \frac{I_1(\alpha, g)}{I_1(\alpha_0, g)}$ (сплошные линии) по наблюдениям спутников «Клементина» и «Аполлон-8» (точки) для полностью непрозрачных частиц ($\kappa = 1$).

характеризуют поверхностный слой толщиной несколько длин волн.

- 1. Ботвинова В.В., Лисина Л.Р. Предварительные оценки пористости верхнего слоя грунта для избранных деталей на поверхности Луны // Астрометрия и Астрофизика. — 1973. — Вып. 18. — С. 25–32.
- 2. Мороженко А.В., Яновицкий Э.Г. Оптические свойства поверхностного слоя Луны // Астрон. журн. 1971а. **48**, № 1. С. 172–183.
- 3. Gehrels T., Coffeen D.L., Owings D. Wavelength dependence of polarization.III. The lunar surface // Astron. J. 1964. 69, № 10. P. 826-852.
- 4. Hapke B. A theoretical function for the lunar surface // Geophys. Res. 1963. 68, № 15. P.4571-4586.
- 5. Hapke B. An improved the theoretical lunar photometric function // Astron. J. 1966. 71, № 5. P. 333-339.
- 6. Irvine W.M. The shadowing effect in diffuse reflection // J. Geophys. Res. 1966. 71, № 12. P.2931-2937.
- 7. *Jaffe L.D.* Surface structure and mechanical properties of the lunar maria // J.Geophys.Res. 1967. 72, № 6. P. 1727-1731.
- 8. Jaffe L.D. Surveyor 6 lunar mission // J. Geophys. Res. 1968. 73, № 16. P. 5297.
- 9. Kaydash V., Shkuratov Yu., Kreslavsky M., et al. Lunar opposition spice at two wavelengths from Clementine data // LPSC XXXIII - 2002. - abstract № 1235.
- Kaydash V., Kreslavsky M., Shkuratov Yu., et al. The opposition effect of the Moon from SMART-1 AMIE data // LPSC XXXIX. – 2008. – № 1391. – P.1195
- 11. Kreslavsky M.A., Shkuratov Yu.G., Kaydash V.G. Lunar opposition surge observed by Clementine: New results // LPSC XXIX. 1998. abstract № 1118.
- 12. Pohn H.A., Radin H.W., Wildey R.L. The moon's photometric function near zero phase angle from Apollo 8 photography // Astrophys.J. 1969. 157, № 3, Pt.2. P. L193–L195.
- Shkuratov Yu.G., Kreslavsky M.A., Stankevich D.G. On Lunar opposition spike observed by Clementine // LPSC XXVIII 1997. P.307.

Поступила в редакцию 19.11.2011