Вісник Astronomical School's Астрономічної Report школи

ISSN 1607-2855

Том 6 • № 2 • 2009 С. 151 – 154

Линии железа как индикаторы светимости для F-, G-, К-сверхгигантов

Ф.А. Чехонадских

Одесский национальный университет им. И.И.Мечникова

Получено более 80 высокоточных соотношения между M_v , T_{eff} и отношением глубин спектральных линий железа. Эти соотношения были использованы для вычислений абсолютных звездных величин M_v для 43 F-, G-, К-сверхгигантов с точностью $0.05^m - 0.25^m$. На основании этих соотношений разработан программный код, который позволяет находить абсолютные звездные величины для сверхгигантов и классических цефеид спектральных классов F0-K0 и классов светимости I и II.

ЛІНІЇ ЗАЛІЗА ЯК ІНДИКАТОРИ СВІТНОСТЕЙ ДЛЯ F-, G-, К-НАДГІГАНТІВ, Чехонадських Ф.А. — Отри-мано понад 80 високоточних співвідношень між M_v, T_{efi} та відношенням глибин спектральних ліній заліза. Ці співвідношення були використані для визначення абсолютних зоряних величин M_v для 43 F-, G-, К-надгігантів з точністю 0.05^m – 0.25^m. На підставі цих співвідношень був розроблений програмний код, який дозволяє отримувати абсолютні зіркові величини для надгігантів і класичних цефеїд спектральних класів F0-K0 та класів світностей І та ІІ.

LINES OF IRON AS LUMINOSITY INDICATORS FOR F-, G-, K-SUPERGIANTS, Chekhonadskikh F.A. – We have achieved more than 80 high-precision relations between M_v , T_{eff} and iron line-depths ratios. These relations have been used for the estimation of the absolute magnitudes M_v for 43 FGK supergiants with an error $0.05^m - 0.25^m$. The program code based on our relations allows determining absolute magnitudes for supergiants and classical Cepheids of F0-G0 spectral classes and I-II luminosity classes.

1. ВВЕДЕНИЕ

Сверхгиганты — звезды высокой светимости, поэтому их можно наблюдать на достаточно больших расстояниях. Однако, будучи достаточно немногочисленными объектами, большинство сверхгигантов к тому же расположены в плоскости диска Галактики, что приводит к их достаточно сильному покраснению. Это затрудняет изучение этих очень интересных звезд, особенно, когда задачи касаются определения светимостей и расстояний до них. Зависимость «период-светимость» для цефеид продолжает быть основным инструментом определения расстояний в Галактике и в местной группе галактик. Точность этой зависимости зависит от точности определения расстояний до калибровочных цефеид, а также от правильности учета межзвездного поглощения и покраснения для них. Для непеременных сверхгигантов, по понятным причинам, эту зависимость применить нельзя. Поэтому необходимы другие способы определения абсолютных звездных величин сверхгигантов. В этой работе предлагается использовать набор спектроскопических индикаторов, чувствительных к светимости.

Калибровки абсолютных звездных величин для звезд спектральных классов АО-G2 для линий триплета кислорода OI 7774Å (по данным узкополосной фотометрии и низкодисперсионной спектроскопии), были предложены Ареллано Ферро [5]. Эти калибровки позволяют определять абсолютные звездные величины с точностью порядка 0.6^{*m*}, после уточнения этот метод позволил достичь точности 0.42^{*m*} – 0.43^{*m*} для цефеид и 0.38^{*m*} – 1.5^{*m*} – для непеременных сверхгигантов [6]. Но, кроме невысокой точности, недостатком метода является сложность измерения суммарной эквивалентной ширины линии OI 7774A, состоящей из трех компонент, а также сильная зависимость интенсивности триплета кислорода от температуры.

Предлагались калибровки светимости и при помощи фотометрических показателей цвета. Ареллано Ферро и Паррайо [4] предложили калибровки абсолютных звездных величин в фотометрической системе Стрёмгрена uvby *β* для F-G сверхгигантов, используя как стандарты яркие непеременные желтые сверхгиганты, для которых были известны с высокой точностью абсолютные звездные величины и покраснения. Похожие и независимые калибровки были предложены Греем [9].

Андриевский [2, 3] предложил использовать линии ионизованного бария Ва II для нахождения абсолютных звездных величин для непеременных сверхгигантов и малоамплитудных цефеид.

Кроме линий OI 7774Å и Ва II и другие линии в спектрах сверхгигантов показывают чувствительность к светимости. Линии ионов всех элементов ведут себя подобно линиям Ва II, а интенсивность линий серы S I увеличивается для сверхгигантов с увеличением светимости (при постоянной T_{eff}).

ISSN 1607-2855. Вісник Астрономічної школи, 2009, том 6, № 2

Особого внимания заслуживает отношение глубин линий ионизованного и нейтрального железа, Fe II и Fe I, которое предлагается нами как новый возможный индикатор светимости. Отношение Fe II / Fe I зависит, в основном, от глубины линий Fe II, так как линии Fe I значительно слабее зависят от светимости. С повышением светимости линии Fe II усиливаются, что приводит к росту отношения Fe II / Fe I. Корреляция между отношением Fe II / Fe I и светимостью является результатом уменьшения плотности атмосфер сверхгигантов с ростом светимости, что приводит к усилению линий ионов (из-за уменьшения случаев рекомбинации ионов железа), а также действием не-ЛТР эффектов.

Целью данной статьи является определение M_v для F-, G-, и К- сверхгигантов и классических цефеид при помощи нового подхода: использования линий железа в качестве спектроскопических индикаторов светимости.

2. НАБЛЮДАТЕЛЬНЫЙ МАТЕРИАЛ

Спектры сверхгигантов были получены на 1.93-м телескопе обсерватории Верхнего Прованса (ОВП, Франция), оснащенном эшелле-спектрографом ELODIE [8], использован также электронный архив спектров ОВП [14]. Разрешающая способность спектрографа R = 42000, участок длин волн $\lambda\lambda = 440-680$ нм, отношение сигнал/шум 100-300. Первичная обработка спектров была проведена Катцем и др. [10].

Также были использованы спектры, полученные на спектрографе UVES, установленном на 8-м телескопе VLT Unit2 (Чили) [7]. Разрешающая способность спектрографа R=80000, участок длин волн $\lambda\lambda = 300 - 1000$ нм, отношение сигнал/шум 300 - 500 в фильтре V.

Для классических цефеид были использованы ранее полученные данные [12]. Мы использовали только спектры, полученные в фазе максимального радиуса (радиальная скорость $V_{\rm rad} = 0$ км/с), так как во всех остальных фазах данные отягощены динамическими и термодинамическими составляющими (например, возможно влияние ударных волн). Выбранная же фаза свободна от этих эффектов, поэтому возможно исследование зависимости M_v цефеид и спектроскопических индикаторов.

Дальнейшая обработка спектров (проведение континуума, отождествление, измерение глубин линий) проводилась при помощи программного пакета DECH20 [1].

3. ВЫЧИСЛЕНИЯ

Следующим этапом работы был отбор сверхгигантов, для которых были известны с высокой точностью абсолютные звездные величины. Это был очень важный и ответственный этап, так как погрешность конечной шкалы светимостей напрямую зависела от точности первичных данных (абсолютных величин и температур). Для 18 сверхгигантов из нашего списка (табл. 1) были использованы значения абсолютных звездных величин из работ следующих авторов: Аррелано Ферро и Паррайо [4], Аррелано Ферро и др. [5,6], Словик [15].

Значения эффективных температур $T_{\rm eff}$ определялись с использованием метода, изложенного в работе [11]. Этот метод основан на использовании отношений глубин избранных пар спектральных линий, наиболее чувствительных к температуре. Благодаря большому числу калибровок (131) этот метод обеспечивает внутреннюю точность определения $T_{\rm eff}$ порядка 10-30 K (ошибка среднего). Немаловажным достоинством этого метода, кроме высокой точности, является также возможность определения $T_{\rm eff}$, свободных от влияния межзвездного покраснения.

Затем была проведена большая работа по поиску наиболее чувствительных к температуре пар линий из всех возможных комбинаций 1500 спектральных линий целого ряда химических элементов (атомов и ионов). Используя метод наименьших квадратов для поиска калибровок в виде полинома:

$$M_v = a + b \log T_{\text{eff}} + c \log^2 T_{\text{eff}} + d \left(\frac{R_{\lambda_1}}{R_{\lambda_2}}\right) + e \left(\frac{R_{\lambda_1}}{R_{\lambda_2}}\right)^2 + f \left(\frac{R_{\lambda_1}}{R_{\lambda_2}}\right)^3$$

где a, b, c, d, e, f — некоторые коэффициенты, а также аппарат математической статистики, был найден ряд комбинаций линий с заметной чувствительностью к светимости. Первые результаты были представлены в работе [13]. Затем для всех калибровок был проведен дополнительный анализ, в результате которого были отобраны только калибровки, основанные на линиях железа. Во-первых, эти линии наиболее многочисленны у этого типа звезд, во-вторых, финальные калибровки получаются независимыми от влияния химического состава. Было найдено более 80 калибровок светимости от Fe II / Fe I, показавшие внутреннюю точность порядка $0.05^m - 0.25^m$. По этим соотношениям были вычислены абсолютные звездные величины для 43 сверхгигантов (табл. 1).

4. РЕЗУЛЬТАТЫ

В табл. 1 представлены результаты новых расчетов абсолютных звездных величин для 18 непеременных сверхгигантов и 25 классических цефеид. В первом столбце указаны названия объектов,

Tuominu T						
Название	$T_{\rm eff}$	M_v	$\sigma_{ m cp.}$	N	<i>M</i> _v (литература)	Методы
HD009973	6654	-7.42	0.08	5	-7.36	[6]
HD010494	6672	-7.38	-	1	-7.34	[6]
HD018391	5846	-7.73	0.22	18	-7.76	[4,6]
HD020123	5160	-1.74	0.06	28	-1.71	[6]
HD020902	6541	-4.41	0.12	11	-4.9	[4,5,6]
HD026630	5309	-3.11	0.02	37	-3.22	[6]
HD032655	6653	-0.71	-	1	-0.73	[6]
HD036673	6922	-6.35	0.07	8	-6.52	[6]
HD054605	6564	-7.9	0.05	21	-7.97	[5]
HD062345	4971	0.56	0.34	3	0.54	[6]
HD065228	5740	-2.39	0.06	49	-1.88	[6]
HD075276	6934	-6.87	0.58	4	-6.45	[6]
HD084441	5281	-1.23	0.08	13	-1.3	[6]
HD101947	6578	-7.89	0.09	6	-7.9	[4,6]
HD164136	6483	-2.33	0.12	22	-2.68	[6]
HD204867	5431	-3.35	0.04	47	-3.06	[6]
HD209750	5199	-3.48	0.04	39	-3	[6]
HD236433	6541	-4.09	0.06	32	-3.98	[15]
HD008890	6057	-3.1	0.02	53	-3.39	PL
HD017463	6165	-2.95	0.04	54	-2.47	PL
HD180583	6113	-1.95	0.05	51	-2.49	PL
HD162714	5561	-3.98	0.02	51	-4.71	PL
HD045412	5878	-3.03	0.03	62	-2.88	PL
HD031913	5677	-3.7	0.05	36	-4.24	PL
HD025361	5464	-3.75	0.02	50	-3.78	PL
HD188727	5406	-3.85	0.01	56	-3.85	PL
HD186688	5956	-2.81	0.06	32	-2.91	PL
HD044320	5204	-4.57	0.02	37	-4.57	PL
HD338867	5166	-5.34	0.06	22	-6.38	PL
HD187921	5000	-5.44	0.04	41	-5.87	PL
HD029260	5901	-3.19	0.03	37	-3.07	PL
HD044990	5020	-5.08	0.03	31	-5.26	PL
HD203156	6159	-3.14	0.07	39	-3.14	PL
HD014662	6067	-3.56	0.03	62	-4.12	PL
HD316354	5300	-3.96	0.05	40	-3.98	PL
HD236948	5279	-4.09	0.04	56	-4.17	PL
HD046595	5483	-3.62	0.02	47	-3.78	PL
HD164975	5540	-3.36	0.02	48	-3.73	PL
HD167660	5099	-4.92	0.03	38	-5	PL
HD197572	5022	-4.68	0.02	34	-4.66	PL
HD339279	5649	-3.5	0.02	48	-3.51	PL
HD089968	5733	-3.38	0.03	42	-3.4	PL
BD+221579	5201	-4.79	0.06	48	-4.08	PL

Таблица 1

во втором и третьем столбцах представлены вычисленные эффективные температуры в кельвинах и абсолютные звездные величины, в четвертом столбце — погрешности вычислений звездных величин, в пятом — количество использованных соотношений, в шестом — данные из литературы или данные, полученные альтернативными методами, в седьмом указаны ссылки на описанные методы из списка литературы, а также (PL) — указатель на то, что звездные величины получены при помощи зависимости «период-светимость» для цефеид. Как мы можем видеть, погрешности полученных данных сопоставимы с ошибками исходных данных, что говорит об адекватности полученной методики. Абсолютная погрешность представленного метода составляет порядка $0.1^m - 0.2^m$ звездной величины и это позволяет сделать вывод о том, что метод достаточно точен и имеет прекрасную перспективу для дальнейшего развития. В заключение, автор хотел бы выразить благодарность д.ф.-м.н. В.В.Ковтюху за предоставленный наблюдательный материал и полезные дискуссии.

1. Галазутдинов Г.А. Система обработки звездных эшелле-спектров. — Нижний Архыз, 1992. — 52 с. — (Препринт / Российская АН. Спец. астрофиз. обсерв.; № 92)

ISSN 1607-2855. Вісник Астрономічної школи, 2009, том 6, № 2

- 2. Andrievsky S.M. BA II lines as luminosity indicators: s-Cepheids and non-variable supergiants // Astron. Nachrichten 1998. **319**, № 4. P. 239-244.
- Andrievsky S.M. Ba II line as Cepheid luminosity indicator // Inform. Bulletin on Var. Stars 1998. 4572. - P.1.
- 4. Arellano Ferro A., Parrao L. Colour excesses and absolute magnitudes for non-Cepheid F-G supergiants from *uvbyβ* photometry // Astron. Astrophys. 1990. **239**, № 1–2. P. 205–213.
- 5. Arellano Ferro A., Mendoza V., Eugenio E. Calibrations of M_v, (Fe/H) and log G for yellow supergiant stars from OI 7774 and uvbyβ data // Astron. J. − 1993. − 106, № 6. − P. 2516–2523.
- 6. Arellano Ferro A., Giridhar S., Rojo Arellano E. A revised calibration of the M_{V-W} (O I 7774) relationship using Hipparcos data: its application to Cepheids and evolved stars // Revista Mexicana de Astronomia y Astrofisica. -2003. 39. P.3-15.
- 7. Bagnulo S., Jehin E., Ledoux C., et al. The UVES Paranal observatory project: A library of high-resolution spectra of stars across the Hertzsprung-Russell diagram // ESO Messenger. 2003. 114. P. 10-14.
- Baranne A., Queloz D., Mayor M., et al. ELODIE: A spectrograph for accurate radial velocity measurements // Astron. Astrophys. Suppl. - 1996. - 119. - P. 373-390.
- 9. *Gray R.O.* The calibration of Stromgren photometry for A, F and early G supergiants // Astron. Astrophys. 1991. **252**. P. 237–244.
- 10. *Katz D., Soubiran C., Cayrel R., et al.* On-line determination of stellar atmospheric parameters $T_{\rm eff}$, log g, [Fe/H] from ELODIE echelle spectra // Astron. Astrophys. 1998. **338**. P. 151-160.
- Kovtyukh V.V. High-precision effective temperatures of 161 FGK supergiants from line-depth ratios // Mon. Notic. Roy. Astron. Soc. - 2007. - 378, № 2. - P.617-624.
- 12. Kovtyukh V. V., Soubiran C., Luck R.E., et al. Reddenings of FGK supergiants and classical Cepheids from spectroscopic data // Mon. Notic. Roy. Astron. Soc. 2008. **389**, № 3. P. 1336–1344.
- Kovtyukh V.V., Chekhonadskikh F.A. Spectral luminosity indicators for FGK supergiants and classical Cepheids // Odessa Astron. Publ. - 2008. - 21. - P. 48-52.
- Moultaka J., Ilovaisky S.A., Prugniel P., Soubiran C. The ELODIE Archive // Publ. Astron. Soc. Pacif. 2004. – 116, № 821. – P. 693–698.
- Slowik D.J., Peterson D.M. Absolute magnitudes and colors of A-F supergiants from near-infrared features // Astron. J. - 1995. - 109. - P.2193-2203.

Поступила в редакцию 25.07.2009