Вісник Astronomical Астрономічної School's школи Report

ISSN 1607-2855

Том 6 • № 1 • 2009 С. 30 – 43

Физические процессы, сопутствовавшие пролету Витимского болида 24 сентября 2002 г.

Л.Ф. Черногор

Харьковский национальный университет имени В.Н.Каразина

Приведены результаты теоретических расчетов, наблюдения и анализа временных вариаций давления в приземной атмосфере, а также уровня геомагнитных пульсаций в диапазоне периодов 1–1000 с, последовавших за пролетом болида массой 50 т, диаметром около 3 м и начальной кинетической энергией 10¹³ Дж на удалении 4850 км. Временные вариации уровня геомагнитных пульсаций подвергались комплексному (с использованием трех интегральных преобразований) спектральному анализу. Обнаружены и идентифицированы четыре группы возмущений, которым соответствовали следующие скорости переноса: 7–8 км/с, 800–850, 300–400 и 260–280 м/с. Перечисленные скорости близки к скоростям, которые наблюдались в геомагнитных пульсациях после стартов ракет с космодромов Плесецьк и Байконур.

ФІЗИЧНІ ПРОЦЕСИ, ЯКІ СУПРОВОДЖУВАЛИ ПРОЛІТ ВІТІМСЬКОГО БОЛІДУ 24 ВЕРЕСНЯ 2002 Р. Чорногор Л.Ф. — Наведені результати теоретичних розрахунків, спостережень і аналізу часових варіацій тиску в приземній атмосфері, а також рівня геомагнітних пульсацій в діапазоні періодів 1—1000 с, які наступили за прольотом боліда масою 50 т, діаметром біля 3 м і початковою кінетичною енергією 10¹³ Дж на відстані 4850 км. Часові варіації рівня геомагнітних пульсацій піддавалися комплексному (з використанням трьох інтегральних перетворень) спектральному аналізу. Виявлені та ідентифіковані чотири групи збурень, яким відповідали наступні швидкості переносу: 7—8, 800—850 км/с, 300—400 і 260—280 м/с. Перераховані швидкості близькі до швидкостей, що спостерігалися в геомагнітних пульсаціях після стартів ракет з космодромів Плесецьк і Байконур.

PHYSICAL PROCESSES ACCOMPANYING THE FLYBY OF THE VITIM BOLIDE ON SEPTEMBER 24, 2002, by Chernogor L.F. – The results of theoretical computations, observations and analysis of temporal variations of pressure in near-surface atmosphere and magnitude of geomagnetic pulsations in the range of 1-1000 c, which had occurred after the flyby of bolide having a mass of 50 tonnes, diameter of 3 m and initial kinetic energy of 10^{13} joules, are given. Temporal variations of the magnitude of geomagnetic pulsations were subjected to complex spectral analysis using three integral transformations. Four groups of perturbations corresponding to transport velocity of 7-8 km/c, 800-850, 300-400 and 260-280 m/c are revealed and identified. Mentioned velocities are close to the ones that have been observed in geomagnetic pulsations after rocket launches at Plesetsk and Baykonur cosmodromes.

1. ВВЕДЕНИЕ

Известно, что крупные космические тела, вторгаясь в геокосмос и атмосферу, вызывают целый комплекс процессов, к которым относятся фрагментация, нагрев, испарение, диссоциация, ионизация самого тела и атмосферы, генерация электромагнитных, ударных воздушных и акустико-гравитационных волн, возмущения геоэлектрического и геомагнитного полей и т.п. [3, 24, 25].

Геомагнитный эффект, вызываемый падениями достаточно крупных космических тел, известен давно [14–17, 21, 22]. Наибольшее число работ посвящено, пожалуй, геомагнитному эффекту Тунгусского феномена [4, 14–17, 20]. И хотя этот эффект известен с начала 1960-х гг., полного теоретического объяснения он не получил до настоящего времени [4, 17]. В цитируемых работах изучалось возмущение главного магнитного поля Земли. Показано, что это возмущение напоминает возмущение геомагнитного поля в процессе умеренной магнитной бури.

Вместе с тем несомненный интерес представляет изучение реакции геомагнитного поля в диапазоне геомагнитных пульсаций (периоды $T \approx 1 - 1000$ с) на вторжение в атмосферу достаточно крупных космических тел. Механизмы генерации пульсаций при этом существенно могут отличаться от механизма возмущения главного магнитного поля Земли. При этом необходимо иметь в виду два обстоятельства. Во-первых, пульсации могут генерироваться относительно небольшими космическими телами (например, с диаметром порядка 1 м) и распространяться на расстояния в несколько тысяч километров. Во-вторых, тела с такими размерами вторгаются в атмосферу достаточно часто (например, один раз в неделю или месяц) [19, 32, 33]. Для сравнения укажем, что космический объект, соизмеримый с Тунгусским телом, падает на Землю в среднем один раз в 100–200 лет [19] или даже раз в 1000 лет [33].

Параметр	Значение	Примечание		
VEOR HOUSE & FORMOUTY	30°	Вычислен на основе свидетельств очевидцев		
этол наклона к торизонту	50	и по данным геостационарного спутника		
BLICOTA BADLIBA	~ 30 km	Косвенно по данным геостационарного		
	/ ~ 50 KM	спутника		
Начальная скорость	~ 20 км/с	Задана		
Начальная масса	50 т	Вычислена по кинетической энергии		
Максимальная удельная	24.10 ¹¹ Br/crep	Измерена на спутнике		
интенсивность оптического излучения	2.1.10 Bi/erep			
Максимальная интенсивность	$3 \cdot 10^{12}$ BT	Пересчитана по удельной интенсивности		
оптического излучения	0 10 21			
Эффективная длительность	0.7 c	Вычислена из траекторных данных		
оптического излучения				
Энергия оптического излучения	10 ¹² Дж	Вычислена по интенсивности оптического		
		излучения		
Начальная кинетическая энергия	$\sim 10^{13}$ Дж	Вычислена по энергии оптического		
	,,,	излучения		
Энерговыделение	10 ¹³ Дж	Вычислена по интенсивности инфразвука,		
	, ,	зарегистрированного на расстоянии 2012 км		
Энерговыделение	$\sim 10^{13}$ Дж	Оценена по степени повреждения леса (до		
		10-15%)		
Энерговыделение	$\sim 10^{13}$ Дж	Вычислена по сотрясению строений,		
	E toll T	дрожанию стекол и т.п.		
Энергия ВГВ	~5.10'' Дж	Вычислена теоретически		
Энергия акустического излучения	∼ 10 ¹¹ Дж	То же		

Таблица 2. Основные параметры геомагнитных пульсаций (определены по первичным регистрациям)

Время запаз- дывания, мин	Скорость рас- пространения, км/с	Преобладающие периоды, мин	Продол- житель- ность, мин	Примечание
12-14	6-7	10—15 (<i>H</i> -компонента) 8—10 (<i>D</i> -компонента)	50 - 55	Усиление уровня пульсаций <i>H</i> -компоненты, уменьшение уровня пульсаций <i>D</i> -компоненты (уменьшение появляется при наложении возникшего и существовавшего колебаний в противофазе)
95 - 105	0.8-0.85	8—12 (<i>H</i> -компонента) 10—15 (<i>D</i> -компонента)	50	Усиление уровня пульсаций обеих компонент
180-190	0.43 - 0.45	12—14 (<i>H</i> -компонента) 13—17 (<i>D</i> -компонента)	55 - 60	То же
300	0.27	8-10 (<i>H</i> -компонента) 10-14 (<i>D</i> -компонента)	50-70	То же

Целью настоящей работы является изложение результатов наблюдения и анализа геомагнитных пульсаций, а также физических процессов, сопровождавших падение Витимского болида диаметром около 3 метров.

2. ОБЩИЕ СВЕДЕНИЯ

Пролет болида был зафиксирован оптическими и инфракрасными датчиками геостационарной системы контроля космического пространства BBC США 24 сентября 2002 г. в 16:48:56 UT (здесь и далее — мировое время). Болид был обнаружен на высоте около 62 км, его пролет фиксировался до высоты примерно 30 км [1, 31]. Началу и концу свечения объекта соответствовали координаты 57.91° с.ш., 112.90° в.д. и 58.21° с.ш., 113.46° в.д. Максимум удельной (отнесенной к 1 стерадиану) интенсивности излучения болида $P_{\Omega \max} \approx 2.4 \cdot 10^{11}$ Вт/стер. Полет космического тела закончился взрывом. Ему предшествовали нагрев, абляция и дробление болида.

Пролет тела вызвал яркое свечение (от белого до красного, а затем бордового), сильный гул, взрыв, генерацию ударной волны, повреждение леса на отдельных участках в зоне шириной 5–7 км и длиной около 50 км вдоль трассы падения. На отдельных участках доля сломанных деревьев достигала 10–15%, на других — не превышала 5% [31].

В работе [1] приведены результаты наблюдения за инфразвуковыми и сейсмическими эффектами, последовавшими за пролетом Витимского болида. Авторами [1] по сейсмическим данными оценена высота (27 км) и координаты (58.3° с.ш., 112.8° в.д.) разрушения болида, а по инфразвуковым данным — начальная энергия (~10¹³ Дж) и размеры облака обломков болида (8–9 м).

Добавим, что в [1] анализировались сейсмические сигналы станций, удаленных от эпицентра взрыва на расстояния $R \approx 140 - 280$ км, и инфразвуковые сигналы станций, удаленных на расстояния $R \approx 2000 - 4400$ км. В спектре последних преобладали периоды 200 и 500 с.

Основные параметры болида, вычисленные автором на основе данных полученных на американском спутнике и свидетельств очевидцев, изложенных в [1, 31], приведены в табл. 1.

Детальный анализ временных вариаций параметров, характеризующих состояние космической погоды, свидетельствуют о том, что за сутки до, через сутки после и в сутки, когда имел место пролет Витимского болида, космическая погода была спокойной. Это существенно облегчило поиск и идентификацию эффектов в геомагнитных пульсациях, вызванных пролетом болида.

3. СРЕДСТВА НАБЛЮДЕНИЯ

Для наблюдения геомагнитных пульсаций применялся магнитометр-флюксметр. Этот несерийный высокочувствительный магнитометр, включенный в состав программно-аппаратного комплекса, размещен в Магнитометрической обсерватории Харьковского национального университета имени В.Н.Каразина (с. Граково, Чугуевский район, Харьковская обл.) [10]. Его географические координаты: 49°40′ с.ш., 36°50′ в.д., геомагнитные координаты: +45°20′ геомагнитной широты, 119°20′ в.д.

Абсолютная погрешность магнитометра определяется уровнем собственных шумов, который составляет 0.5 пТл – 0.5 нТл для периодов $1 - 10^3$ с соответственно.

4. РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ

Временные вариации *H*- и *D*-компоненты горизонтальной проекции геомагнитного поля для 23, 24 и 25 сентября 2002 г. показаны на рис. 1–6.

Отметим сразу, что эффекты, связанные с прохождением вечернего терминатора на высотах z = 0 - 200 км, к моменту наблюдения возможных эффектов болида закончились.

Вначале проанализируем временные вариации *H*-компоненты для фоновых дней 23 и 25 сентября. Из рис. 1 видно, что поведение *H*-компоненты оставалось практически монотонным. Амплитуда пульсаций изменялась от 1 до 1.5 нТл. Как и следовало ожидать, амплитуда сигнала в различных спектральных окнах увеличивалась с ростом периодов пульсаций.

Почти таким же было поведение *H*-компоненты и 25 сентября (см. рис. 3). Только в интервале времени 21:00–21:15 наблюдался пакет геомагнитных пульсаций с амплитудой в 2–3 раза превышающей ее значения до и после возникновения этого пакета. Пульсации были хорошо выражены в спектральных окнах 20–100 и 100–300 с.

В день пролета болида поведение H(t) существенно отличалось от того, что было в фоновые дни. Примерно в течение 1 часа до события флуктуации H-компоненты были практически монотонными (см. рис. 2). После пролета болида характер сигнала изменялся четырежды. Этим изменениям соответствуют задержки около 12–14, 105, 180 и 300 мин. Продолжительности этих процессов были около 55, 50, 55 и 50 мин соответственно. Изменения характера сигнала заключались в увеличении в 1.5-2 раза амплитуды и периода преобладающих колебаний. Особенно четко такие изменения проявлялись в диапазоне периодов 300-1000 с (см. рис. 3). В полосе периодов 100-300 с усилились пульсации в интервале времени 20:50 - 21:10. Амплитуда пульсаций при этом возросла в 1.5-2 раза. Менее заметным было увеличение (в 1.3-1.5 раза) амплитуд пульсаций в окне с периодами 20-100 с. Это имело место в интервалах времени 21:05-21:15, 22:05-22:08 и 21:40-21:50. Возможно, что это был единый процесс, состоящий из группы пакетов пульсаций.

Далее опишем временные вариации *D*-компоненты. В фоновые дни (см. рис. 4 и рис. 6) вариации были практически монотонными. Эпизодически наблюдались увеличения амплитуд пульсаций с периодами 20-100 с.

После пролета болида практически в тех же временных интервалах, что и для *H*-компоненты, имели место четыре группы изменений характера сигнала (см. рис. 5). В первой группе наблюдалось подавление пульсаций, а в остальных группах — их усиление в 1.5-2 раза. Упомянутым группам соответствовали запаздывания 12–14, 105, 180 и 300 мин. Их продолжительности составляли 50, 50, 60 и 70 мин соответственно.

В предположении, что вызванные пролетом болида возмущения распространялись преимущественно в горизонтальном направлении от места падения космического тела до места наблюдения, вычислены характерные скорости перемещения этих возмущений. Основные параметры геомагнитных пульсаций, сопутствовавших пролету болида, приведены в табл. 2. Из табл. 2. видно, что, скорее всего, возникали четыре группы возмущений, имевших скорости распространения, изменяющиеся от 270 м/с до 6–7 км/с.

Скорость распространения акустических возмущений, изображенных на рис.13, составляла 300 и 390 м/с для пунктов наблюдения, находящихся восточнее и западнее места пролета болида. Различие в этих скоростях, скорее всего, связано с разными условиями распространения акустических волн и, в частности, с влиянием ветра на передачу акустической энергии на тропосферно-стратосферных высотах.

Рис. 1. Временные вариации *H*-компоненты геомагнитного поля в течение контрольного дня 23 сентября 2002 г. Здесь и далее панели сверху вниз: сигналы в диапазоне периодов 1–1000 с; в поддиапазоне 1–20 с; в поддиапазоне 20–100 с; в поддиапазоне 100–300 с и в поддиапазоне 300–1000 с.

Рис. 2. Временные вариации *H*-компоненты геомагнитного поля 24 сентября 2002 г. Сплошной вертикальной линией показан момент пролета болида. Стрелками ↑ и ↓ показаны моменты начала и окончания изменения характера сигнала.

5. РЕЗУЛЬТАТЫ СПЕКТРАЛЬНОГО АНАЛИЗА

Для комплексного спектрального анализа применялись оконное преобразование Фурье (ОПФ), адаптивное преобразование Фурье (АПФ) и вейвлет-преобразование (ВП). В работе [9] показана целесообразность совместного использования таких преобразований как дополняющих друг друга по своим возможностям. По результатам ОПФ, АПФ и ВП строились временные зависимости функции спектральной плотности (причем осуществлялся переход от частоты к периоду колебаний) и энергограммы. Энергограммами нами были названы распределения энергии сигнала по интервалу периодов. Методика вычислений и формат представления в настоящей работе были такие же, как в работе [9].

Поскольку в эксперименте регистрировались геомагнитные пульсации в диапазоне периодов T = 1 - 1000 с, спектральный анализ осуществлялся в поддиапазонах 20 - 100, 100 - 300 и 300 - 1000 с.

Результаты комплексного спектрального анализа приведены на рис. 6-12. Из этих рисунков видно, после пролета болида спектральные характеристики пульсаций существенно изменялись. Скорее

Рис. 4. Временные вариации *D*-компоненты геомагнитного поля в течение контрольного дня 23 сентября 2002 г.

всего, имело место четыре группы возмущений. Это хорошо видно в поддиапазоне 300-1000 с (см. рис. 11, рис. 12).

Наибольшее по энергии возмущение, проявляющееся в *H*-компоненте, имело запаздывание около 200 мин (скорость $v \approx 400$ м/с) и период 600-800 с. Наиболее сильное возмущение, регистрируемое в *D*-компоненте, имело запаздывание около 300 мин ($v \approx 270$ м/с) и период 600-900 с. Как известно, такие же периоды имеют внутренние гравитационные волны (ВГВ) в атмосфере [12, 13].

В поддиапазоне периодов 100 – 300 с (такие же периоды имеет низкочастотный инфразвук в атмосфере) наиболее энергичные возмущения имели запаздывания около 200 и 240 мин для *D*- и *H*-компоненты. Им соответствовали скорости 410 и 340 м/с и периоды 150 – 300 и 100 – 220 с.

В поддиапазоне периодов 20-100 с (такие же периоды имеет среднечастотный инфразвук в ат-

Рис. 5. Временные вариации *D*-компоненты геомагнитного поля 24 сентября 2002 г. Сплошной вертикальной линией показан момент пролета болида. Стрелками ↑ и ↓ показаны моменты начала и окончания изменения характера сигнала.

Рис. 6. Временные вариации *D*-компоненты геомагнитного поля в течение контрольного дня 25 сентября 2002 г. ISSN 1607-2855. *Вісник Астрономічної школи, 2009, том 6, № 1* 35

Таблица 3. Значения скоростей (м/с) распространения возмущений по результатам спектрального анализа

Компонента	Диапазон периодов, с				
геомагнитного поля	20 - 100	100 - 300	300 - 1000		
	2300		4000		
	810	810	740		
Н	450	450	400		
	310	340	310		
	260 - 270	270	270		
	7400		2100		
	900	810	850		
D	400	410	400		
	310 - 340				
	260	260	260		

мосфере) наиболее сильные возмущения имели запаздывания около 36 и 260 мин для *H*-компоненты и 11, 55 и 170 мин для *D*-компоненты. Таким задержкам могли соответствовать скорости около 2.3 км/с и 310 м/с для *H*-компоненты и около 7.4 км/с, 1.5 км/с и 480 м/с. Наибольшую энергию имели пульсации с периодами 60-90 с.

Значения скоростей распространения возмущений, определенные по результатам спектрального анализа, приведены в табл. 3. Сравнение скоростей, найденных этим способом и непосредственно по регистрациям пульсаций, показали, что они близки между собою (сравните табл. 2 и табл. 3).

Рис. 8. То же, что и на рис.7, для *D*-компоненты.

Рис. 7. Результаты спектрального анализа временных вариаций *H*-компоненты геомагнитного поля и соответствующие им энергограммы для 24 сентября 2002 г. Панели сверху вниз: временные вариации сигнала в поддиапазоне 20–100 с, результаты ОПФ, результаты АПФ, результаты ВП. Сплошной вертикальной линией показан момент пролета болида.

6. РЕЗУЛЬТАТЫ РАСЧЕТОВ

Падение достаточно крупных болидов сопровождается целым комплексом физических процессов: нагревом, плавлением, испарением и свечением вещества, диссоциацией и ионизацией атмосферного газа и, в меньшей степени, вещества небесного тела, генерацией ударной и акустико-гравитационной (АГВ) волн, дроблением и взрывом осколков болида, выбрасыванием вверх или всплыванием горячих продуктов взрыва, геомагнитным эффектом и т.д. [3, 18, 24, 25, 30]. Не ставя перед собой цели подробно описать все эти эффекты в одной статье, остановимся лишь на части процессов, существенных для теоретической оценки геомагнитного эффекта.

Энергетика свечения болида. Из измерений на спутника США известно, что максимальная удельная интенсивность оптического излучения $P_{\Omega m} \approx 2.4 \cdot 10^{11}$ Вт/стер (см., например, [31]). Тогда максимальная интенсивность оптического излучения $P_m = 4\pi P_{\Omega m}$ составляет $3 \cdot 10^{12}$ Вт.

Оценим эффективную длительность Δt_r оптического излучения. Основное торможение болида произошло в диапазоне высот $\Delta z \approx H \approx 7$ км, где H — высота приведенной атмосферы в окрестности высоты разрушения болида $z_0 \approx 30$ км. При этом болид пролетел расстояние $R = \Delta z / \sin \alpha = H / \sin \alpha \approx 14$ км, где $\alpha \approx 30^\circ$ — угол наклона траектории небесного тела к горизонту. Полагая, что болид имел типичную для таких небесных тел начальную скорость $v_0 \approx 20$ км/с, получим, что $\Delta t_r = \Delta R / v_0 \approx 0.7$ с. Тогда энергия световой вспышки болида $E_r \approx P_m \Delta t_r / 2 \approx 10^{12}$ Дж.

Начальная кинетическая энергия болида. Чтобы оценить начальную кинетическую энергию болида *E_k* учтем, что в энергию световой вспышки преобразуется следующая доля энергии [33, 34]:

$$\eta_k = \frac{E_r}{E_k} = (0.1212 \pm 0.0043) E_r^{0.115 \pm 0.075}$$

где E_r измеряется в килотоннах тротила. Энергия $E_r \approx 10^{12}$ Дж ≈ 0.24 кт. Тогда $\eta_k \approx 9.2 - 11.8\%$, $E_k \approx 8.5 \cdot 10^{12} - 10.9 \cdot 10^{12}$ Дж. В среднем $E_k \approx 10^{13}$ Дж.

Зная E_k и v_0 , можно легко вычислить начальную массу болида $m_0 = 2E_k/v_0^2 \approx 50$ т. При плотности вещества $3 \cdot 10^3$ кг/м³ начальный диаметр болида составлял $d \approx 3.2$ м.

Энергетика ударной волны и инфразвука. Полет болида сопровождался энерговыделением в диапазоне высот 28-35 км. Наибольшее энерговыделение имело место на высоте $z_0 \approx 30$ км. Энергию E_a и мощность P_a инфразвука можно оценить по временной регистрации уровня инфразвука $\Delta p(t)$,

Рис. 9. То же, что и на рис.7, для поддиапазона **Р** 100-300 с. д

Рис. 10. То же, что и на рис.7, для *D*-компоненты и для поддиапазона 100 – 300 с.

измеренной микробарографом на расстояниях R, равных 2012 и 4350 км (рис.13) [1]. Тогда

$$E_a = \varepsilon_a V_a = 4\pi R^2 c \tau_a \varepsilon_a, \tag{1}$$

$$P_a = \Pi_a S_a = 4\pi R^2 \Pi_a = 4\pi R^2 c \varepsilon_a, \tag{2}$$

где $\varepsilon_a = (\Delta p_m)^2 / \rho_0 c^2$ — плотность энергии инфразвука на расстоянии R, Δp_m — амплитуда инфразвука, ρ_0 — невозмущенная плотность воздуха на высоте z = 0, c — скорость звука в приземной атмосфере, τ_a — длительность инфразвукового импульса, $\Pi_a = \varepsilon_a c$ — плотность потока энергии инфразвука, $V_a = S_a c \tau_a$ — объем, занимаемый импульсом инфразвука, $S_a = 4\pi R^2$ — площадь, окружающая источник инфразвука. Из записи $\Delta p(t)$ следует, что в среднем $\Delta p_m \approx 0.6$ Па, $\tau_a \approx 180$ с. Скорость инфразвука была определена по временной задержке $\Delta t_a \approx 111$ мин и расстоянию $R \approx 2012$ км [1]. При этом $c \approx 300$ м/с. Тогда для $\rho_0 \approx 1.3$ кг/м³ имеем $\varepsilon_a \approx 3.7 \cdot 10^{-8}$ Дж/м³, $S_a \approx 5.1 \cdot 10^{13}$ м², $V_a \approx 2.7 \cdot 10^{18}$ м³. Вычисляя по формулам (1) и (2), получим, что $E_a \approx 10^{11}$ Дж, $P_a \approx 5.6 \cdot 10^8$ Вт.

Заметим, что полученное значение P_a соответствует длительности инфразвукового импульса на расстоянии $R \approx 2012$ км. В окрестности места взрыва длительность акустического импульса (воздушной ударной волны) была намного меньше — вероятно, около 1 мс. При этом мощность ударной волны составляла около 10^{14} Вт.

Полученное значение E_a на два порядка меньше E_k . Это означает, что лишь небольшая часть кинетической энергии болида перешла в энергию инфразвука. В то же время энергия ударной волны близка к E_k .

Зная энергию ударной волны, нетрудно вычислить избыточное давление Δp в волне, а также длительность t_+ и импульс I положительной фазы волны у поверхности Земли под местом взрыва болида (табл. 4). Оказалось, что на расстоянии $R \approx 30-35$ км, $\Delta p \approx 2.2-1.8$ кПа, $t_+ \approx 7.3-7.9$ с и $I \approx 7-6$ кПа·с соответственно. При таких параметрах ударной волны возникают повреждения примерно 10-15% леса, что и наблюдалось исследователями эффектов Витимского болида [31]. Повреждение около 5% леса имеет место при $\Delta p \approx 0.8-1$ кПа [18]. Заметим, что вычисление по критериям из [35] параметров ударной волны, которая вызвала сотрясение построек и дрожание стекол, также приводит к $E_k \approx 10^{13}$ Дж.

Энергетика АГВ. В работе [12] оценена доля кинетической энергии, переходящая в акустические

Рис. 11. То же, что и на рис.7, для поддиапазона 300-1000 с.

Рис. 12. То же, что и на рис.7, для *D*-компоненты и для поддиапазона 300-1000 с.

Черногор Л.Ф.

Таблица 4. Основные параметры ударной волны в зависимости от расстояния от места взрыва

<i>R</i> , км	30	35	40	45	50	55	60
Δp , кПа	2.2	1.8	1.6	1.4	1.2	1.1	1.0
<i>t</i> ₊ , c	7.3	7.9	8.5	9.0	9.5	9.9	10.4
I, кПа∙с	7.0	6.0	5.2	4.6	4.2	3.8	3.5

и внутренние гравитационные волны (ВГВ). Оказалось, что

$$\eta_a=rac{(\gamma-1)^2}{4\sqrt{2\pi}\gamma},\qquad \eta_g=rac{\gamma-1}{4\sqrt{2\pi}\gamma}e^{1/2},$$

где $e \approx 2.718...$ — основание натурального логарифма, γ — показатель адиабаты. При $\gamma = 1.4$ имеем $\eta_a \approx 1.1\%, \ \eta_g \approx 4.7\%$. Поскольку $E_a = \eta_a E_k \approx 10^{11}$ Дж, $E_k = \eta_a^{-1} E_a \approx 10^{13}$ Дж.

При пролете болида основное торможение происходило на расстоянии $L_1 \approx H/\sin \alpha \approx 2H$. Это расстояние и есть продольный размер источника АГВ. Поперечный размер этого источника дается следующим соотношением [26]:

$$L_2 = \sqrt{\frac{E_e}{L_1 p_0}}.$$
(3)

Вычисляя, получим, что $L_1 \approx 14$ км, $L_2 \approx 845$ м. Объем источника АГВ $V_{ag} = \pi L_1 L_2^2 \approx 3.7 \cdot 10^9$ м³, а его эффективный размер $r_{ag} = V_{ag}^{1/3} \approx 1.6$ км. При $R \gg r_{ag}$ источник АГВ можно рассматривать как точечный.

Оценим амплитуду вариаций давления в месте наблюдения магнитного эффекта Витимского болида ($R \approx 4850$ км). По измерениям этих амплитуд на расстояниях $R \approx 2012$ км и R = 4350 км оценен коэффициент затухания волн. Он оказался близок к $2.1 \cdot 10^{-4}$ км⁻¹. С учетом сферической расходимости инфразвуковой волны от взрыва и ее затухания на расстоянии 4850 км амплитуда инфразвука $\Delta p_m \approx 0.2$ Па. При этом $\Delta p_m/p(0) \approx 2 \cdot 10^{-6}$, где $p(0) \approx 10^5$ Па — давление у поверхности Земли. Тогда на высотах $z \approx 120 - 150$ км $\Delta p_m/p(0) \approx 0.6 - 2\%$. Здесь учтено, что указанное отношение растет с увеличением высоты примерно по экспоненциальному закону с масштабом 2*H* (см., например, [13]).

Амплитуду ВГВ, генерируемых при полете болида, оценим, исходя из следующих соображений. Как видно из значений η_a и η_g , энергия ВГВ примерно в 4 раза больше энергии инфразвуковых волн, а амплитуда Δp_m — в 2 раза. Поскольку ВГВ каналируются в термосферном волноводе толщиной $L_0 \approx 100$ км, то их ослабление будет в $(R/L_0)^{1/2} \approx 7$ раз меньше ослабления инфразвука на том же расстоянии. Таким образом, относительная амплитуда инфразвука и ВГВ над местом регистрации геомагнитных пульсаций на высотах $z \approx 120 - 150$ км было около 1 и 14% соответственно.

Параметры огненного шара (огненного эллипсоида). В результате пролета болида образуются высокотемпературные продукты. Суда по ярко белому свечению [31], их температура T была близкой к 6000 К. При значении температуры атмосферного газа на высоте взрыва $T_0 \approx 250$ К, отношение $\Theta = T/T_0 \approx 24$. Покажем, что при достаточно небольших (d < 10 м) размерах болида образуется огненный шар (точнее, огненный эллипсоид), при бо́льших размерах (d > 10 м) — огненный факел (плюм), прорывающийся через атмосферу вверх [30].

При энерговыделении, обладающим сферичной симметрией, критерием того, что образуется (ог-

Рис. 13. Временные вариации давления приземной атмосферы, сопровождавшие падение Витимского болида 24 сентября 2002 г.: а) $R \approx 2012$ км (восточнее места падения); б) $R \approx 4350$ км (западнее места падения).

Таблица 5. Параметры огненного шара (огненного эллипсоида)

Параметр	Значение	Примечание
Высота образования	~ 30 км	Рассчитана по расстоянию от места взрыва до
Bleora oopasoballini		свидетелей и времени запаздывания ударной волны
Средний начальный радиус	790 м	
Начальная температура	6000 K	Оценена по цвету оптического излучения
Начальная внутренняя энергия	10 ¹³ Дж	Рассчитана по энергии взрыва
Максимальная скорость подъема	~ 100 м/с	Рассчитана из уравнения движения огненного шара
Время нарастания скорости	$\sim 5 c$	То же
	$7.3 \cdot 10^7 \text{ Br/m}^2$	Вычислен по начальной температуре огненного шара
Пачальный поток теплового излучения	7.5°10 D1/M	$T \approx 6000 \text{ K}$
Длительность теплового излучения	a, 150 c	Оценена с учетом охлаждения и движения
(продолжительность подъема)	/ × 150 C	огненного шара
Максимальная высота подъема	~ 10 км	Оценена по скорости и продолжительности подъема

ненный шар или плюм) служит безразмерный параметр

$$\alpha_p = \frac{E_e}{p_0 H^3},\tag{4}$$

где E_e — энерговыделение при пролете болида, p_0 — давление газа на высоте взрыва. Если $\alpha_p < 1$ и d < 10 м — возникает огненный шар, при $\alpha_p > 1$ и $d \ge 10$ м — плюм.

В случае Витимского болида $E_e \approx E_k \approx 10^{13}$ Дж, $p_0 = p(z_0) \approx 10^3$ Па, $H \approx 7$ км и $\alpha_p \approx 2.9 \cdot 10^{-2} \ll 1$. Таким образом, при таком критерии (4) должен был образоваться огненный шар.

При пролете болидов энерговыделение обладает не сферической, а цилиндрической симметрией. При этом вместо (4) следовало бы принять несколько иной критерий. Оценки показали, что и в этом случае $\alpha_p \ll 1$. Это означает, что возникал огненный эллипсоид, а не плюм. Далее для простоты ограничимся моделью огненного шара с радиусом R_0 , равным среднему геометрическому трех измерений эллипсоида.

Образовавшийся огненный шар под действием силы плавучести получил начальное ускорение $a = g(\Theta - 1) \approx 230 \text{ м/c}^2$ и стал быстро набирать скорость. По мере подъема шара его температура стала быстро уменьшаться за счет теплового излучения, нагрева всасываемого холодного воздуха (присоединенной массы воздуха) и адиабатического расширения. Расширение было связано с падением давления атмосферы по мере подъема воздуха. Одновременно с уменьшением Θ , быстро уменьшалось и ускорение всплывающего объема газа.

Для описания подъема огненного шара численно решалось уравнение движения с учетом перечисленных выше процессов. Основные параметры огненного шара, полученные в процессе решения, приведены в табл. 5. Заметим, что начальный радиус шара рассчитывался на основе следующего соотношения:

$$R_0 = \sqrt[3]{\alpha_R \frac{E_e}{p_0}},$$

где $\alpha_R = \frac{3\eta_R}{14\pi\gamma}$, где η_R — доля энергии взрыва, переходящая во внутреннюю энергию нагретого газа. Принимая, что $\eta_R \approx 1$, $E_e = 10^{13}$ Дж, $p_0 = 10^3$ Па, получаем $R_0 = 790$ м.

На расстояниях от проекции траектории болида $R_1 = 45$ км и от траектории до очевидца $R_2 = \sqrt{R_1^2 + z_0^2} \approx 54$ км огненный шар имел угловой размер $\Delta\beta \approx 2R_0/R_2 \approx 2.9 \cdot 10^{-2}$ рад $\approx 1.7^{\circ}$. Значение

 $R_2 = \sqrt{R_1^2 + z_0^2 \approx 54}$ км огненный шар имел угловой размер $\Delta\beta \approx 2R_0/R_2 \approx 2.9 \cdot 10^{-2}$ рад $\approx 1.7^\circ$. Значение угла $\Delta\beta$ более чем в три раза превышало угловые размеры Солнца или Луны (около 0.5°). Огненный шар светился в видимом диапазоне в течение короткого времени (~ 0.7 с), пока его температура не уменьшилась до $T \approx 2000 - 3000$ К. Скорее всего, очевидец Е.С.Ярыгин наблюдал «полусферическое свечение» именно огненного шара [31].

Генерация геомагнитных пульсаций. Вариации Δp сопровождались волновыми возмущениями (BB) концентрации нейтралов, которые в свою очередь, модулировали с тем же периодом ионизированную составляющую — концентрацию электронов N. Заметим, что время становления N не превышало 100 с. Поэтому возмущения N успевали подстраиваться под BB нейтральной компоненты, если их период T > 100 с. BB N вызывали периодические вариации проводимости плазмы σ в динамо области, т.е. на высотах 120 - 150 км. Их относительная амплитуда δ_{σ} была также порядка 1 и 14% при возмущении инфразвуком и ВГВ соответственно. При этом, как следует из роторного уравнения

Таблица 6. Сравнение скоростей распространения геомагнитных возмущений, сопутствовавших пролету Витимского болида и стартами ракет

Источник возмущений	<i>v</i> ₁ , км/с	<i>v</i> ₂ , км/с	<i>v</i> ₃ , м/с	<i>v</i> 4, м/с
Полет болида (по регистрации пульсаций)	6 - 7	0.8 - 0.85	320-340, 430-450	270
Полет болида (по результатам спектрального анализа)	~ 7	0.7-0.9	300-340, 400-450	260 - 270
СР с космодрома Плесецк	8-12	0.8 - 0.9	310-350	260 - 280
СР с космодрома Байконур	9	0.8-1.1	300-400	270 - 280

Максвелла, амплитуда пульсаций

$$\Delta B \approx \mu_0 j_0 \delta_\sigma \Delta z_d,$$

где $\mu_0 = 4\pi \cdot 10^{-7}$ Гн/м — магнитная постоянная, j_0 — плотность невозмущенного тока в ионосфере, $\delta_\sigma \approx 1 - 14\%$ — амплитуда относительных вариаций проводимости плазмы в динамо области, Δz_d толщина этой области. Полагая, что в переходное время суток (вечером 24 сентября) $j_0 \approx 10^{-6}$ А/м², $\Delta z_d \approx 30$ км, из (5) получим $\Delta B \approx 0.4 - 5.3$ нТл. Примерно такие значения амплитуды пульсаций и имели место в измерениях.

Добавим, что в работах [3, 21, 22] обсуждается другой, менее эффективный механизм генерации магнитных возмущений под действием ударной волны крупных метеорных тел.

7. ОБСУЖДЕНИЕ

Вначале отметим, что параметры болида и сопровождавших его пролет физических процессов, оцененные автором, хорошо согласуются с известными результатами [1, 31]. Далее обсудим надежность идентификации возмущений геомагнитного поля и их связь с пролетом болида.

Как отмечалось выше, после пролета Витимского болида возникли четыре группы возмущений геомагнитного поля в диапазоне пульсаций, которым соответствовали скорости 6-7 км/с, 800-850, 300-400 и 260-270 м/с.

Скорость 6-7 км/с имеют медленные МГД волны [23].

Скорости 800 – 850 м/с свойственны ударным АГВ (УАГВ). В месте генерации амплитуда этих волн значительна, волны являются нелинейными, их скорость распространения существенно может превышать скорость звука на ионосферных высотах (последняя обычно не более 300 – 800 м/с). Такие волны неоднократно наблюдались нами и другими авторами при стартах ракет (см., например, [2, 5–9]).

Скорость 300-400 м/с близка к скорости инфразвука и скорости АГВ. Заметим, что измерения $\Delta p(t)$ в пункте «Подольск» (восточнее от места измерения болида) дали значение скорости инфразвука $c \approx 390$ м/с.

Скорость 260 - 270 м/с также свойственна ВГВ. Впрочем, эта, четвертая, группа возмущений могла быть продолжением третьей группы. Разность между временами запаздывания могла просто равняться периоду ВГВ. Действительно, $\Delta t_4 - \Delta t_3 = 120$ мин, такие периоды свойственны ВГВ. Результаты сравнения скоростей распространения возмущений при пролете болида и стартах ракет с космодромов Плесецк и Байконур, полученных в ходе анализа уровня геомагнитных пульсаций, приведены в табл. 6 (см. также [11]). Из таблицы видно, что скорости в каждой из групп достаточно близки друг к другу. Это свидетельствует о двух фактах. Во-первых, геомагнитные возмущения, которые последовали за пролетом болида, скорее всего, вызваны именно этим космическим телом. Во-вторых, возмущения, возникающие при мощных энерговыделениях, мало зависят от конкретного типа источника.

Полезно сравнить энергетики болида и ракетной струи. Значения удельной энергии, приведенной к высоте 30 км, $\tilde{E} \sim 10^8 \text{ Дж/м}$ для ракет и болида оказались вполне сопоставимы.

Соответствие результатов наблюдений результатам теоретических расчетов и оценок является еще одним аргументом в пользу того, что возникшие вслед за пролетом болида геомагнитные пульсации вызваны именно этим событием.

В пользу того, что описываемые геомагнитные пульсации вызваны пролетом болида, свидетельствует также то, что подобные пульсации отсутствовали как за день до, так и на следующий день после события. Таким образом, с определенной степенью уверенности можно утверждать, что в данной работе обнаружена и изучена реакция геомагнитных пульсаций на пролет и взрыв достаточно крупного космического тела (диаметром около 3 м).

Наблюдение и анализ физических эффектов, сопровождающих падение крупных космических тел, оказывается весьма плодотворным для исследования взаимодействия подсистем в системе Земля-атмосфера-ионосфера-магнитосфера [27–29].

ISSN 1607-2855. Вісник Астрономічної школи, 2009, том 6, № 1

(5)

8. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

1. На основе опубликованных траекторных данных болида, его удельной интенсивности оптического излучения, вариаций давления инфразвука и свидетельств очевидцев вычислены основные параметры болида и сопутствовавших его пролету физических процессов. В частности, значение кинетической энергии болида, оцененной разными способами, оказалось близким к 10¹³ Дж.

2. На основе анализа первичных регистраций геомагнитных пульсаций обнаружены четыре группы возмущений, последовавшими за пролетом и взрывом болида. В предположении, что наблюдавшиеся задержки в реакции геомагнитного поля вызваны воздействием болида, определены скорости распространения возмущений. Они оказались близки к 6 – 7 км/с, 800 – 850, 430 – 450, 320 – 340 и 260 – 280 м/с (последние три скорости, по-видимому, образуют одну – две группы).

3. Проведен комплексный (с использованием трёх интегральных преобразований) спектральный анализ временных вариаций геомагнитных пульсаций в различных поддиапазонах периодов. Наиболее четко выделялись четыре группы возмущений, имеющие примерно те же скорости, что и скорости, определенные непосредственно по временным вариациям уровня пульсаций.

4. Обнаруженные группы скоростей близки к группам скоростей, полученным на основе анализа геомагнитных пульсаций, сопровождавших старты ракет с космодромов Плесецк и Байконур.

5. Возмущения, вызванные пролётом болида, скорее всего, переносились при помощи медленных МГД волн (*v* ≈ 7−8 км/с), УАГВ (*v* ≈ 800−850 м/с), ВГВ (*v* ≈ 400−450 м/с, *v* ≈ 260−280 м/с) и инфразвука (*v* ≈ 300−340 м/с). В последних трех случаях геомагнитные пульсации, по-видимому, генерировались под действием УАГВ, ВГВ и инфразвука вблизи места их регистрации.

Автор благодарен К.П.Гармашу и С.Г.Леусу за проведение непрерывных геомагнитных наблюдений, а В.П.Бурмаке, С.В.Панасенко и М.А.Шамоте за помощь, оказанную при работе над рукописью статьи.

- 1. Адушкин В.В., Попова А.П., Рыбнов Ю.С., Кудрявцев В.Н. Мальцев А.Л., Харламов В.А. Геофизические эффекты Витимского болида 24.09.2002 г. // Доклады Академии наук. 2004. **397**, № 5. С. 685–688.
- 2. *Афраймович Э.Л., Перевалова Н.П.* GPS-мониторинг верхней атмосферы Земли. Иркутск: ГУ НЦ АВХ ВСНЦ СО РАМН, 2006. 480 с.
- 3. Бронштэн В.А. Физика метеорных явлений. М.: Наука, 1981. 416 с.
- 4. Бронштэн В.А. Магнитный эффект Тунгусского метеорита // Геомагнетизм и аэрономия. 2002. **42**, № 6. С. 854-856.
- 5. Бурмака В.П., Костров Л.С., Черногор Л.Ф. Статистические характеристики сигналов доплеровского ВЧ радара при зондировании средней ионосферы, возмущенной стартами ракет и солнечным терминатором // Радиофизика и радиоастрономия. 2003. 8, № 2. С. 143–162.
- 6. Бурмака В.П., Таран В.И., Черногор Л.Ф. Комплексные радиофизические исследования волновых возмущений в ионосфере, сопровождавших старты ракет на фоне естественных нестационарных процессов // Радиофизика и радиоастрономия. — 2004. — **9**, № 1. — С. 5–28.
- 7. Бурмака В.П., Таран В.И., Черногор Л.Ф. Волновые возмущения в ионосфере, сопутствовавшие стартам ракет на фоне естественных переходных процессов // Геомагнетизм и аэрономия. 2004. **44**, № 4. С. 518–534.
- 8. Бурмака В.П., Лысенко В.Н., Черногор Л.Ф., Черняк Ю.В. Волновые процессы в F-области ионосферы, сопутствовавшие стартам ракет с космодрома Байконур // Геомагнетизм и аэрономия. 2006. **46**, № 6. C. 783-800.
- 9. Бурмака В.П., Панасенко С.В., Черногор Л.Ф. Современные методы спектрального анализа квазипериодических процессов в геокосмосе // Успехи современной радиоэлектроники. 2007. — № 11. — С. 3–24.
- 10. Гармаш К.П., Леус С.Г., Пазюра С.А., Похилько С.Н., Черногор Л.Ф. Статистические характеристики флуктуаций электромагнитного поля Земли // Радиофизика и радиоастрономия. 2003. — 8, № 2. — С. 163-180.
- 11. Гармаш К.П., Леус С.Г., Черногор Л.Ф., Шамота М.А. Вариации геомагнитного поля, сопутствовавшие стартам и полетам космических аппаратов // Космічна наука і технологія. 2007. **13**, № 6. С. 87–98.
- 12. Голицын Г.С., Григорьев Г.Н., Докучаев В.П. Излучение акустико-гравитационных волн при движении метеоров в атмосфере // Изв. АН СССР. Физика Земли и океана. 1977. **13**, № 9. С. 926–935.
- 13. Госсард Э.Э., Хук У.Х. Волны в атмосфере: Инфразвук и гравитационные волны в атмосфере их возникновение и распространение. М.: Мир, 1978. 532 с.
- 14. *Иванов К.Г.* Геомагнитные явления, наблюдавшиеся в Иркутской магнитной обсерватории после взрыва Тунгусского метеорита // Метеоритика. 1961. Вып. 21. С. 46-48.
- 15. Иванов К.Г. Влияние локального повышения проводимости Е-слоя ионосферы на Sq-вариацию магнитного поля Земли // Геомагнетизм и аэрономия. 1962. **2**, № 5. С. 943–947.

- 16. Иванов К.Г. О природе воздействия Тунгусского падения на верхнюю атмосферу, геомагнитное поле и свечение ночного неба // Геомагнетизм и аэрономия. 1967. 7, № 6. С. 1033–1038.
- 17. Иванов К.Г. Еще раз о проблеме моделирования геомагнитного эффекта Тунгусского падения // Геомагнетизм и аэрономия. — 2002. — **42**, № 6. — С. 857–858.
- 18. Коробейников В.П., Чушкин П.И., Шуршалов Л.В. Комплексное моделирование полета и взрыва в атмосфере метеорного тела // Астрономический вестник. — 1991. — **25**, № 3. — С. 327–343.
- Кручиненко В.Г., Волощук Ю.І., Кащеєв Б.Л., Казанцев А.М., Лупішко Д.Ф., Яцків Я.С. Метеорноастероїдна небезпека та доплив космічної речовини на Землю // Космічна наука і технологія. — 1999. — 5, № 1. — С. 3–17.
- Немчинов И.В., Лосева Т.В., Мухин В.Г. Оценка магнитного эффекта при падении Тунгусского метеороида // Физические процессы в геосферах: их проявления и взаимодействие (геофизика сильных возмущений). Сб. научн. тр. — М.: ИДГ РАН, 1999. — С. 324–338.
- 21. Савченко Ю.Н. Геомагнитные возмущения, вызываемые ударными волнами крупных метеорных тел. І // Геомагнетизм и аэрономия. 1975. **15**, № 6. С. 1047–1053.
- Савченко Ю.Н. Геомагнитные возмущения, вызываемые ударными волнами крупных метеорных тел. II // Геомагнетизм и аэрономия. — 1976. — 16. № 6. — С. 518–525.
- 23. Сорокин В.М., Федорович Г.В. Физика медленных МГД-волн в ионосферной плазме. М.: Энергоиздат, 1982. 136 с.
- 24. Стулов В.П., Мирский В.Н., Вислый А.И. Аэродинамика болидов. М.: Наука, 1995. 240 с.
- 25. *Стулов В.П.* Крупные болиды: испарение и дробление // Астрономический вестник. 2006. **40**, № 3. С. 220–229.
- 26. *Цикулин М.А.* Ударные волны при движении в атмосфере крупных метеоритных тел. М.: Наука, 1969. 112 с.
- 27. *Черногор Л.Ф.* Физика Земли, атмосферы и геокосмоса в свете системной парадигмы // Радиофизика и радиоастрономия. 2003. **8**, № 1. С. 59–106.
- 28. *Черногор Л.Ф.* Земля атмосфера геокосмос как открытая динамическая нелинейная система // Космічна наука і технологія. — 2003. — **9**, № 5/6. — С. 96–105.
- Черногор Л.Ф. Земля атмосфера ионосфера магнитосфера как открытая динамическая нелинейная физическая система. 1. // Нелинейный мир. — 2006. — 4, № 12. — С. 655–697. 2. // Нелинейный мир. — 2007. — 5, № 4. — С. 198–231.
- 30. Шувалов В.В., Трубецкая И.А. Гигантские болиды в атмосфере Земли // Астрономический вестник. 2007. **41**, № 3. С. 241–251.
- 31. Язев С.А., Антипин В.С. По следам Витимского болида // Земля и Вселенная. 2004. № 5. С. 59-72.
- Brown P., Whitaker R.W., ReVelle D.O., Tagliaferri E. Multistation infrasonic observations of two large bolides: signal interpretation and implications for monitoring of atmospheric explosions // Geophys. Res. Lett. - 2002. - 29. - P. 1-4.
- Brown P., Spalding R.E., ReVelle D.O. Tagliaferri E. The flux of small near-Earth objects colliding with the Earth // Nature. 2002. - 420. - P.294-296.
- Nemtchinov I.V., Svetsov V.V., Kosarev I.B., et al. Assessment of kinetic energy of meteoroids detected by satellite-based light sensors // Icarus. - 1997. - 130. - P.259-274.
- The effects of nuclear weapons / Eds S.Glasstone, P.J.Dolan. Third Edition. US Department of Defense, US Department of Energy. 1977. – 668 p.

Поступила в редакцию 12.09.2008