Вісник	Astronomical
Астрономічної	School's
ШКОЛИ	Report

ISSN 1607–2855

Том 5 · № 1-2 · 2004 С. 115-121

УДК 523.61

Кривые блеска комет C/2000 WM1 (LINEAR), C/2001 A2 (LINEAR), C/2002 C1 (Ikeya–Zhang), C/2002 F1 (Utsunomiya) и 19P/Borrelly

В.С. Филоненко¹, К.И. Чурюмов²

¹Научно-исследовательский институт астрономии Харьковского национального университета ²Астрономическая обсерватория Киевского национального университета

Построены и исследованы кривые блеска новых комет C/2000 WM1 (LINEAR), C/2001 A2 (LINEAR), C/2002 C1 (Ikeya–Zhang), C/2002 F1 (Utsunomiya) и короткопериодической кометы 19P/Borrelly, которая была объектом исследования с помощью космического аппарата Deep Space-1. Определены фотометрические параметры H_y и п этих комет и параметры их вспышечной активности. У комет C/2001 A2, C/2002 C1, C/2002 F1 и 19P обнаружены скачкообразные изменения параметра п на до- и послеперигелийных участках орбиты. У кометы C/2001 A2 обнаружено влияние фазовой зависимости блеска на доперигелийном участке кометной орбиты и определено значение фазового коэффициента. Проведено сравнение кривой блеска короткопериодической кометы 19P/Borrelly в трех ее появлениях: 1981, 1987 и 2001 гг.

КРИВІ БЛИСКУ КОМЕТ С/2000 WM1 (LINEAR), С/2001 A2 (LINEAR), С/2002 С1 (IKEYA–ZHANG), С/2002 Г1 (UTSUNOMIYA) І 19Р-ВОПСЕЦЦУ, Філоненко В.С., Чурюмов К.І. — Побудовано і досліджено криві блиску нових комет С/2000 WM1 (LINEAR), С/2001 A2 (LINEAR), С/2002 С1 (Ікеуа–Zhang), С/2002 Г1 (Utsunomiya) і короткоперідичної комети 19Р-Вотrelly, яка була об'єктом досліджень за допомогою космічного апарата Deep Space-1. Визначено фотометричні параметри H_y і п цих комет і параметри їх спалахової активності. У комет С/2001 А2, С/2002 С1, С/2002 Г1 і 19Р знайдено скачкоподібні змінш параметра п на до- і післяперигелійних ділянках орбіти. У комети С/2001 А2 знайдено вплив фазової залежності блиску на доперигелійній ділянці кометної орбіти і визначено значення фазового коефіцієнта. Проведено порівняння кривої блиску короткоперіодичної комети 19Р/Воrrelly у трьох її появах: 1981, 1987 і 2000 рр.

THE LIGHT CURVES OF COMETS C/2000 WM1 (LINEAR), C/2001 A2 (LINEAR), C/2002 C1 (IKEYA-ZHANG), C/2002 F1 (UTSUNOMIYA) AND 19P-BORRELLY, by Filonenko V.S., Churyumov K.I. – The light curves of four new comets: C/2000 WM1 (LINEAR), C/2001 A2 (LINEAR), C/2002 C1 (Ikeya-Zhang), C/2002 F1 (Utsunomiya), and a short-period comet 19P/Borrelly – the target of space mission "Deep Space-1", were constructed and investigated. The values of the photometrical parameters Hy and n of these comets and the parameters of their brightness outburst activity were obtained. The stick-slip variations of the parameter n during preperihelion and postperihelion branches of light curves of comets C/2001 A2, C/2002 C1, C/2002 F1, and 19P were found. An influence of the phase dependence on the light curve of comet C/2001 A2 during preperihelion part of its orbit were found. A comparison of light curves of the short-period comet 19P during its three different appearances (1981, 1987 and 2001) were maked.

Конец второго тысячелетия ознаменовался появлением целого ряда ярких, уникальных по своему внешнему виду и свойствам комет. Пристальное внимание наблюдателей всего мира привлекли такие кометы, как уникальная комета Shoemaker–Levi 9, которая распалась на 23 фрагмента и в период с 16 по 22 июля 1994 г. столкнулась с Юпитером, аномально яркая комета C/1995 O1 (Hale-Bopp), комета C/1996 B2 (Hyakutake) с аномально длинным хвостом, которая в марте 1996 г. подошла к Земле на расстояние около 0.1 а.е., комета C/1999 S4 (LINEAR), ядро которой на глазах наблюдателей распалось и полностью дезинтегрировало, в результате чего комета 10 августа 2000 г. прекратила свое существование.

В настоящей работе исследуются фотометрические особенности пяти наиболее примечательных комет начала нового, третьего тысячелетия. Наблюдательный материал, необходимый для по-

Комета	H_{u}	$\frac{1}{n}$	N
C/2000 WM1 (LINEAR)	$7^{m}.91 \pm 0^{m}.02$	2.64 ± 0.06	319*
	6.42 ± 0.07	4.54 ± 0.11	216**
C/2001 A2 (LINEAR)	8.65 ± 0.05	8.86 ± 0.17	343*
	7.57 ± 0.04	4.08 ± 0.10	624^{**}
C/2002 C1 (Ikeya–Zhang)	7.01 ± 0.06	3.81 ± 0.16	290*
	6.49 ± 0.02	2.78 ± 0.08	643**
C/2002 F1 (Utsunomiya)	9.49 ± 0.19	5.16 ± 0.31	58^{*}
	7.94 ± 0.34	4.13 ± 0.54	31**
19P–Borrelly	5.38 ± 0.45	10.9 ± 1.1	43*
	7.88 ± 0.12	5.10 ± 0.20	103^{**}
19P–Borrelly (1981 IV)	_	_	_*
	6.9 ± 0.5	5.3 ± 1.3	62**
19P–Borrelly (1987 XXXIII)	4.83 ± 0.26	12.8 ± 0.6	198*
	6.76 ± 0.13	6.7 ± 0.3	307**
T			

Таблица 1. Фотометрические параметры H_n и *n* пяти комет

Примечания:

N — число использовавшихся оценок интегрального блеска;

* — до перигелия; ** — после перигелия.

строения кривых блеска, был собран с различных интернетовских сайтов. Методика обработки наблюдательного материала, построения кривых блеска и их анализа неоднократно описывалась нами ранее (например [2,3,4]).

C/2000 WM1 (LINEAR). Открыта 16 декабря 2000 г. группой LINEAR как астероидоподобный объект 18^m. 20 декабря по наблюдениям Т.В.Spahr с 1.2-м рефлектором Смитсонианской астрофизической обсерватории объект имел кому диаметром около 10" и слабый широкий хвост длиной 10["] – 20["]. Комета прошла через перигелий 22.6731 января 2002 г. на расстоянии 0.555343 а.е. от Солнца. Эксцентриситет ее орбиты е = 1.000271, а ее плоскость сильно наклонена к плоскости эклиптики $(i = 72.6^{\circ})$. Исследование орбиты показали, что это, вероятно, не первое появление кометы в окрестностях Солнца.

Gy.M.Szabo и др. выполнили детальную спектрофотометрию и исследовали морфологию кометы до перигелия и показали, что она, вероятно, относится к типу «газовых» комет. W.M.Irvine и др. обнаружили у кометы необычно большое значение отношения HNC/HCN, не соответствующее существующим моделям химического состава комет. J.T.T.Makinen и др. проанализировали все наблюдения кометы, полученные на околоперигелийном участке орбиты кометы с помощью инструмента SWAN, который установлен на космическом аппарате SOHO.

Кривая блеска кометы построена нами на основе 535 оценок интегрального блеска кометы, полученных с 1 ноября 2001 г. по 18 июня 2002 г. Кривую блеска (рис. 1) отличают: а) значительная вспышечная активность (хорошо заметны, по крайней мере, 14 вспышек до перигелия и не менее 15 вспышек после перигелия); б) обратная асимметрия (до перигелия блеск кометы увеличивался медленнее, чем затем убывал после перигелия); в) отсутствие изменений параметра n на дои послеперигелийных участках орбиты; г) большая вспышка блеска (амплитуда $\approx 3^{m}.5$), которая произошла сразу же после перигелия. Найденные нами значения фотометрических параметров H_{y} и *п* приведены в табл. 1.

С/2001 A2 (LINEAR). Открыта той же исследовательской группой LINEAR 15 января 2001 г. как астероидоподобный объект 17^m – 18^m. На ПЗС-изображениях, полученных 16 января, объект имел диффузный вид с комой размером около 10". Через перигелий комета прошла 24.5204 мая 2001 г. на расстоянии 0.779026 а.е. от Солнца. Орбита кометы имеет эксцентриситет e = 0.999337 и это, по-видимому, не первое ее посещение внутренних частей Солнечной системы.

C.W.Hergenrother, M.Chamberlain и Y.Chamberlain на ПЗС-изображениях кометы, полученных 116 Филоненко В.С., Чурюмов К.И.

До перигелия		После перигелия		
Интервал $\lg(r)$	n	Интервал $\lg(r)$	n	
C/2001 A2 (LINEAR)				
-0.110.07	4.85 ± 0.16	-0.110.04	0.64 ± 1.01	
0.070.18	18.7 ± 2.3	-0.040.07	5.23 ± 0.34	
-	_	0.070.25	3.620.22	
-	_	0.250.32	9.2 ± 1.5	
-	_	0.320.46	-2.9 ± 1.1	
C/2002 C1 (Ikeya-Zhang)				
-	_	-0.300.08	3.47 ± 0.05	
_	_	0.080.31	1.09 ± 0.11	
C/2002 C1 (C/2002 F1 (Utsunomiya))				
-0.360.35	5.16 ± 0.31	-0.360.34	4.12 ± 0.54	
-0.350.20	9.82 ± 0.37	-0.340.23	7.2 ± 2.6	
-0.200.05	3.64 ± 0.48	-0.200.04	0.20 ± 0.64	
19P–Borrelly				
0.110.17	17.0 ± 1.9	0.140.25	7.44 ± 0.47	
0.170.22	2.5 ± 4.5	0.250.37	4.17 ± 0.64	

Таблица 2. Изменение значений фотометрического параметра n четырех комет

30.12 апреля с помощью 1.54-м рефлектора, обнаружили двойное ядро, состоящее из компонентов примерно равного блеска и отстоящих друг от друга на 3".5. Оба компонента были весьма конденсированными. 14.98 мая по наблюдениям Е.Jehin и др., выполненным с помощью 8.2-м телескопа VLT, компонент А был на 1^m слабее компонента В, который находился от него на расстоянии 12".6. К 16.98 мая расстояние между компонентами увеличилось до 14".6. Оба компонента имели индивидуальные комы. Z.Sekanina по результатам астрометрических наблюдений компонентов ядра, полученных с 30 апреля по 18 мая, нашел вероятный момент распада ядра кометы — март 29.9±1^d.6.

О.Schuetz и др. провели 16–21 июня интенсивный мониторинг внутренней комы кометы с высоким пространственным разрешением. Для наблюдений в инфракрасном диапазоне использовался 3.6-м телескоп ESO (La Silla), а для наблюдений в видимом диапазоне — 3.5-м телескоп NTT и 2.2-м телескоп ESO/MPG. Эти наблюдения показали, что комета состоит из нескольких фрагментов. Как показал анализ, выполненный Z.Sekanina, наблюдались три фрагмента: D, E, F. Фрагмент D отделился от компонента B июня 3.5 ± 1 ^d8, фрагмент E отделился июня 9.5 ± 0 ^d7, а фрагмент F — июня 11.3 ± 0 ^d5.

Z.Sekanina и др. нашли строгую временную корреляцию между началом вспышек блеска и фрагментацией ядра кометы. Это подтверждает мнение З.Секанины о том, что вспышки блеска являются спусковым механизмом деления кометных ядер.

Для построения кривой блеска нами были использованы 967 оценок интегрального блеска кометы, полученные с 12 марта 2001 г. по 16 ноября 2001 г. На кривой блеска выделяется не менее 6 вспышек блеска до перигелия и как минимум 13 вспышек после перигелия. Причем небольшая вспышка амплитудой ≈ 0^m.5 и максимумом ≈2 августа 2001 г. зарегистрирована нами также с помощью ПЗС-наблюдений [5], что подтверждает надежность построенной кривой блеска.

Найденные нами значения фотометрических параметров H_y и n приведены в табл. 1. Как видно из рис. 2, до перигелия скорость изменения блеска, характеризующаяся параметром n, скачкообразно изменила свое значение на гелиоцентрическом расстоянии $r \approx 1.175$ а.е., а после перигелия значение параметра n менялось по крайней мере четыре раза (табл. 2).

На доперигелийном участке кометной орбиты было обнаружено значимое влияние фазовой зависимости на кривую блеска и было определено значение фазового коэффициента $\beta = 0.086 \pm 0.027~(^m/{\rm град}).$ После перигелия влияние фазовой зависимости оказалось несущественным.

C/2002 C1 (Ikeya–Zhang). Новую комету 9^m визуально обнаружили 1 февраля 2002 г. японские наблюдатели К.Ikeya и D.Zhang. Это уже шестая новая комета на счету К.Икейя, которую ему удалось открыть после долгого перерыва (5 комет К.Икейя открыл еще в 60-х годах). Новая комета прошла через перигелий 18.9793 марта 2002 г. на гелиоцентрическом расстоянии 0.507058. У нее эллиптическая орбита с эксцентриситетом e = 0.989954.

S.Nakano и I.Hasegawa, исследовав эволюцию орбиты этой кометы и изучив китайские хроники, установили, что это очередное появление кометы C/1661 C1, которая, вероятно, наблюдалась также в феврале 1273 г., в феврале 877 г., в июле 458 г., в мае 88 г. н.э. и в декабре 269 г. до н.э. С историческими подробностями наблюдений этой кометы можно ознакомиться на сайте Кометной секции Британской астрономической ассоциации: www.ast.cam.ac.uk/~jds/.

Вблизи перигелия комета была яркой и ее интегральный блеск достигал $3^m - 3^m$.5. М.Fujii, К.Ayani и Н.Kawakita в спектрах низкого разрешения, полученных 3 марта с 28-см рефлектором, обнаружили эмиссионные линии NaI. C.W.Hergenrother 3–10 марта с помощью 1.5-м рефлектора наблюдал пылевые оболочки на расстоянии 30'' от ядра.

A.Lecacheux и N.Biver с помощью субмиллиметрового космического телескопа с 21 по 28 марта проводили спектральные наблюдения высокого разрешения и обнаружили линию H₂O на частоте 556.936 ГГц. Производительность воды 28 марта была около $1.7 \cdot 10^{29}$ молекул/с.

G.Cremonese и др. 20 апреля с помощью 3.5-м рефлектора наблюдали натриевый джет, вытянутый в направлении кометного хвоста. 27–29 апреля M.D.Hicks и M.S.Hanner с помощью 5-м паломарского телескопа обнаружили излучение силикатов в области 10 мкм, однако J.E.Lyke и др. 22 мая, наблюдая с помощью 1.52-м телескопа, не нашли у кометы какого-либо излучения силикатов на длине волны 11 мкм. H.A.Weaver и др. с помощью спектрографа высокого разрешения STIS Космического телескопа Хаббла 20–23 апреля наблюдали кометные эмиссии H, O, C, S, CO, C₂, CS, S₂, OH и NH. Были подробно исследованы пространственные профили этих линий.

Кривая блеска кометы была нами построена по 964 оценкам интегрального визуального блеска, полученным с 2 февраля 2002 г. по 14 июля 2002 г. Кривую блеска отличает почти полное отсутствие вспышек блеска: не более 3 вспышек до перигелия и около 9 вспышек после перигелия, причем все они небольшой амплитуды (рис. 3).

Найденные нами значения фотометрических параметров H_y и n приведены в табл. 1. Как видно из рис. 3, после перигелия параметр n резко изменил свое значение на гелиоцентрическом расстоянии $r \approx 1.202$ а.е. (табл. 2).

C/2002 F1 (Utsunomiya). Комету визуально открыл японский наблюдатель S.Utsunomiya с помощью 15-см бинокуляра на утреннем небе как диффузный объект 10^m со слабой центральной конденсацией. Комета была сильно конденсированной и имела короткий хвост. Через перигелий комета прошла 22.8985 апреля 2002 г. на расстоянии 0.438299 а.е. от Солнца. Ее орбита эллиптическая с эксцентриситетом e = 0.999541 и ее плоскость сильно наклонена к плоскости эклиптики ($i = 80.9^\circ$).

A.J.Lovell, E.S.Howell и F.P.Schloerb наблюдали комету с помощью 300-м радиотелескопа в Аресибо в линии ОН на длине волны 18 см и построили карты излучения кометы в этой радиолинии.

Кривая блеска кометы построена нами на основе 89 оценок интегрального блеска кометы, полученных с 21 марта 2002 г. по 26 мая 2002 г. Как видно из рис. 4, кривая блеска этой кометы имеет примечательный двугорбый вид с двумя сериями вспышек блеска, расположенных симметрично относительно перигелия. На кривой блеска выделяется не менее 12 вспышек блеска: 6 вспышек до перигелия и 6 — после.

Найденные нами значения фотометрических параметров H_y и n приведены в табл. 1. Как оказалось, фотометрический параметр n два раза изменял свое значение до перигелия и два раза — после (рис. 4). Причем изменения этого параметра происходили симметрично относительно перигелия (табл. 2). На кривой блеска этой кометы видна еще одна, новая особенность: изменения параметра n совпадали с моментами вспышек блеска (рис. 4). Эта особенность заметна также на кривых блеска кометы C/2001 LINEAR A2 (рис. 2) и кометы 19P–Borrelly (рис. 5). Вопрос о том, что 118 Филоненко B.C., Чурюмов К.И. в обнаруженном явлении причина, а что следствие (изменение параметра n провоцирует вспышку блеска или же наоборот, вспышка блеска приводит к резкому изменению значения параметра n) требует, по-видимому, дополнительного исследования.

Рис. 1. Кривая блеска кометы C/2000 WM1 (LINEAR) и ее апроксимация формулой С.Орлова (табл. 1).

Рис. 2. Кривая блеска кометы C/2001 A2 (LINEAR): 1 — наблюденная кривая; 2 — теоретическая кривая без учета скачкообразных изменений прараметра *n* (табл. 1); 3 — теоретическая кривая с учетом изменений параметра *n* (табл. 2); 4 — теоретическая кривая с учетом влияния фазовой зависимости блеска.

Рис. 3. Кривая блеска кометы C/2002 C1 (Ikeya–Zhang) и ее апроксимации формулой C.Орлова без учета скачкообразного изменения параметра n на послеперигелийном участке кривой блеска (табл. 1) и с учетом этого обстоятельства (табл. 2).

19P-Borrelly. Это двенадцатое наблюденное появление короткопериодической кометы, которая была визуально открыта 28 декабря 1904 г. А.L.N.Borrelly на Марсельской обсерватории с помощью 16-см рефрактора. Комета имеет период 6.86 года и в очередной раз прошла через перигелий 14.7334 сентября 2001 г. на расстоянии 1.3582 а.е. от Солнца.

Эта комета была избрана объектом исследования с помощью космического аппарата "Deep Space–1", который 22 сентября 2001 г. в $22^h 30^m$ UT прошел на расстоянии 2171 км от ядра кометы. На борту DS-1 были установлены приборы, которые позволяли получать черно-белые изображения, проводить спектральные ИК-измерения, измерять концентрацию ионов и электронов, а также измерять магнитные поля в окрестностях кометы.

За несколько часов до наименьшего сближения с кометой ионные и электронные датчики DS-1 начали регистрировать кометное вещество. За 32 минуты до наименьшего сближения камеры DS-1 начали снимать ядро кометы и наилучшее изображение было получено за несколько минут до минимального сближения. На снимках ядро имеет вытянутую форму длиной около 8 км. На поверхности ядра были обнаружены несколько активных областей, а также кратеры. Был подтвержден вывод, сделанный еще по результатам наземных наблюдений о том, что у этой кометы активно всего около 10% поверхности ядра.

За 2 минуты до минимального сближения ионные и электронные датчики были повернуты

Рис. 4. Кривая блеска кометы C/2002 F1 (Utsunomiya): 1 — наблюденная кривая; 2 — теоретическая кривая без учета скачкообразных изменений прараметра *n* (табл. 1); 3 — теоретическая кривая с учетом изменений параметра *n* (табл. 2).

Рис. 5. Кривая блеска кометы 19Р–Воггеlly: 1 — наблюденная кривая; 2 — теоретическая кривая без учета скачкообразных изменений прараметра n (табл. 1); 3 — теоретическая кривая с учетом изменений параметра n (табл. 2).

Филоненко В.С., Чурюмов К.И.

120

в сторону от ядра кометы с тем, чтобы они могли тщательно исследовать газовую и пылевую составляющие внутренней комы.

Кривая блеска была построена нами на основе 146 оценок интегрального блеска, полученных с 19 июня 2001 г. по 19 марта 2002 г. Как видно из рис. 5, для кометы характерна сильная вспышечная активность: на кривой блеска выделяется не менее 5 вспышек блеска до перигелия и не менее 10 вспышек после перигелия, причем амплитуды вспышек $\ge 1^m$.

Найденные нами значения фотометрических параметров H_y и n приведены в табл. 1. Как видно из рис. 5, параметр n изменял свое значение как до, так и после перигелия (табл. 2), причем моменты изменения параметра n совпадали со вспышками блеска.

Сравнение кривой блеска, построенной по наблюдениям, полученным во время последнего появления с кривыми блеска, построенными по наблюдениям кометы в появлениях 1981 г. и 1987 г. [1], показало, что кривая блеска кометы сохраняет свою форму от появления к появлению и имеет сравнимое значение параметра n в различных появлениях, но в появлении 2001 г. комета была слабее на $\geq 1^m$, чем в появлении 1981 г. и на $\sim 0^m.6 - 1^m$ слабее, чем в появлении 1987 г. (табл. 1).

Выводы:

1. Построены и исследованы кривые блеска новых комет C/2000 WM1 (LINEAR), C/2001 A2 (LINEAR), C/2002 C1 (Ikeya–Zhang), C/2002 F1 (Utsunomiya) и короткопериодической кометы 19P/Borrelly.

2. Определены фотометрические параметр
ы H_y иnэтих комет и параметры их вспышечной активности.

3. У комет С/2001 А2, С/2002 С1, С/2002 F1 и 19Р обнаружены скачкообразные изменения параметра n на до- и послеперигелийных участках орбиты.

4. У кометы C/2001 A2 обнаружено влияние фазовой зависимости блеска на доперигелийном участке кометной орбиты и определено значение фазового коэффициента.

5. Проведено сравнение кривой блеска короткопериодической кометы 19P/Borrelly в трех ее появлениях: 1981, 1987 и 2001 гг.

- 1. *Филоненко В.С., Чурюмов К.И.* Кривые блеска комет. III. Кометы П/Боррелли (1981 IV) и (1987 XXXIII), П/Темпель-1 (1983 XI), Чернис (1983 XII) // Кометный Циркуляр. 1990. № 419. С. 4–6.
- 2. Филоненко В.С. Кривые блеска, вспышечная активность и физические характеристики комет // Труды международной конференции КАММАК–99 «Современные проблемы комет, астероидов, метеоров, метеоритов, астроблем и кратеров». — Винница, 26 сентября — 1 октября 1999 г. — Винница, 2000. — С. 125–131.
- 3. Филоненко В.С., Чурюмов К.И. Кривые блеска избранных комет: фотометрические параметры и вспышки блеска // Астрон. Вестн. 2001. **35**, № 2. С. 158–162.
- 4. *Филоненко В.С., Чурюмов К.И.* Некоторые особенности кривых блеска и вспышечной активности комет // Астрон. Вестн. — 2003. — **37**, № 2.

Поступила в редакцию 9.09.2004