Вісник	Astronomical
Астрономічної	School's
школи	Report
школи	Report

ISSN 1607–2855

Том 4 • № 1 • 2003 С. 121–126

УДК 524.7

О равновесной угловой скорости течений газопылевого вещества в самогравитирующих системах

В.А. Антонов¹, О.А. Железняк², А.А. Терещенко²

¹ Главная астрономическая обсерватория РАН, Пулково

² Национальный авиационный университет, Киев

Рассматривается задача нахождения распределения равновесной угловой скорости течения газопылевого вещества в заданном осесимметричном гравитационном потенциале при заданном распределении плотности.

ПРО РІВНОВАЖНУ КУТОВУ ШВИДКІСТЬ ТЕЧІЙ ГАЗОПИЛОВОЇ РЕЧОВИНИ В САМОГРАВІТУ-ЮЧИХ СИСТЕМАХ, Антонов В.А., Железняк О.О., Терещенко А.О. — Розглядається задача знаходження розподілу рівноважної кутової швидкості течії газопилової речовини в заданому вісесиметричному гравітаційному потенціалі при заданому розподілі густини.

ON EQUILIBRIUM ANGULAR VELOCITY OF GAS-DUST MATTER FLOWS IN SELF-GRAVITATING SYSTEMS, by Antonov V.A., Zheleznyak O.A., Tereshchenko A.A. — The problem of determination of distribution of equilibrium angular velocity of gas-dust matter flow in a axisymmetric gravitational potential under the density distribution specified is considered.

1. Введение

Газопылевая составляющая галактик имеет свои динамические характеристики, которые отличаются от звездной составляющей. Важную роль пылевая среда играет при образовании звезд и планет. Эволюция газопылевых колец и дисков, которые наблюдаются вокруг звезд может приводить к формированию планетных систем. Современное изучение динамики пыли в Солнечной системе, позволяет глубже понять космогонические процессы, связанные с перераспределением углового момента в протопланетных облаках. Известно, что содержание пыли в планетных атмосферах изменяет их оптические и динамические характеристики.

Газопылевая среда в галактиках, согласно фотометрическим наблюдениям [2], занимает пространство вложенного эллипсоида, который имеет как локальные, так и глобальные неоднородности плотности в виде облаков, глобул, оболочек и дисков. Концентрация этих газопылевых структур меняется в зависимости от расстояния до центра галактики или до определенной плоскости, которая не всегда совпадает с экваториальной. Если отвлечься от локальных образований, то в глобальном отношении для приближенного описания распределения плотности $\rho(r, z)$ газопылевого вещества в эллиптических галактиках можно воспользоваться следующими законами:

$$\rho = \rho_0 \left(1 + \frac{r^2}{a_1^2} + \frac{z^2}{c_1^2} \right)^{-n},\tag{1}$$

$$\rho = \rho_0 \left(1 - \frac{r^2}{a_1^2} - \frac{z^2}{c_1^2} \right)^n, \tag{2}$$

$$\rho = \rho_0 \exp\left(-\frac{r^2}{a_1^2} - \frac{z^2}{c_1^2}\right),\tag{3}$$

121

$$\rho = \rho_0 + \rho_1 \left(\frac{r^2}{a_1^2}\right) \exp\left(-\frac{r^2}{a_1^2} - \frac{z^2}{c_1^2}\right),\tag{4}$$

где ρ_0 – плотность в центре галактики, r, z – цилиндрические коо́рдинаты, a_1, c_1 – полуоси газопылевого эллипсоида. Распределения (1)–(3) характеризуют закономерность уменьшения плотности от центра к периферии галактики. Очевидно, поверхности равной плотности представляют собой вложенные сфероиды, имеющие сжатие $\frac{c_1}{a_1}$. Распределение (4) описывает глобальную кольцеобразную неоднородность (уплотнение), ориентированную вдоль экваториальной плоскости галактики; плотность вещества увеличивается при увеличении r, достигая максимума при $r = a_1$, а затем плавно убывает.

Для описания глобальных динамических процессов в галактиках самогравитацией газа и пыли можно пренебречь, поскольку гравитационный потенциал в основном определяется звездами. Кроме силы гравитации, на движение газопылевого вещества также оказывают влияние крупномасштабные магнитные поля, световое давление, температурные и химические неоднородности среды, однако этими дополнительными факторами в данной работе мы пренебрегаем.

В свою очередь поля небесных тел имеют весьма сложный характер, однако удается рассмотреть некоторые простые потенциалы, отражающие типичные свойства гравитирующих систем:

1) Обобщение потенциала Кузмина

$$\Phi(r,z) = \frac{\Phi_0}{\sqrt{1 + \frac{r^2}{a^2} + \frac{z^2}{c^2}}};$$
(5)

2) Потенциал притягивающего центра массой m

$$\Phi(r,z) = \frac{m}{\sqrt{r^2 + z^2}};\tag{6}$$

3) Внутренний потенциал однородного сфероида

$$\Phi(r,z) = -\frac{r^2}{a^2} - \frac{z^2}{c^2}.$$
(7)

В выражениях (5), (7) *а* и *с* – постоянные, характеризующие геометрические свойства самогравитирующих фигур.

Разумеется, ничто не мешает для приближенного описания внутреннего потенциала галактики воспользоваться суперпозицией указанных гравитационных полей.

Скорость движения газопылевого вещества состоит из хаотической и коллективной компонент, которые определяются дисперсией скоростей и угловой скоростью вращения. Исходя из данных спектральных наблюдений [1], дисперсия скоростей газопылевой среды меньше, чем у звезд, а ее угловая скорость вращения $\omega(r, z)$ существенно зависит не только от расстояния до оси вращения, но и от высоты над экваториальной плоскостью галактики [3,4]. В результате имеем неоднородное вращение газопылевой среды в заданном гравитационном поле.

Основная задача исследования состоит в определении угловой скорости стационарного течения газопылевого вещества в гравитационных полях с упомянутыми свойствами.

2. Основные уравнения, описывающие неоднородное вращение

Задача нахождения равновесных конфигураций самогравитирующих систем рассматривалась неоднократно при условии, когда скорость вращения зависит только от расстояния до оси вращения [5,6]. Напротив, моделям с неоднородным вращением уделяется меньше внимания, поскольку рассмотрение их более сложно.

Если допустить, что существует однозначная связь между давлением и плотностью, то обязательно приходим к модели, которая вращается либо твердотельно ($\omega = \text{const}$), либо с угловой скоростью, зависящей только от r. При $\omega = \omega(r, z)$ может возникнуть меридиональная циркуляция, но мы будем рассматривать только лишь стационарные течения газопылевой среды в виде 122 Антонов В.А., Железняк О.А., Терещенко А.А. вращения.

С учетом этих предположений, уравнения равновесия будут иметь вид:

$$\omega^2 r - \frac{1}{\rho} \frac{\partial p}{\partial r} + \frac{\partial \Phi}{\partial r} = 0 \tag{8}$$

$$\frac{1}{\rho}\frac{\partial p}{\partial z} - \frac{\partial \Phi}{\partial z} = 0 \tag{9}$$

где p = p(r, z) есть распределение давления газа.

Из уравнения (9) можно сразу определить распределение давления:

$$p(r,z) = \int_{L(z)}^{z} \rho \frac{\partial \Phi}{\partial z} \, dz, \tag{10}$$

где область интегрирования L(z) определяется граничной поверхностью конфигурации. Для распределений плотности (1), (3), (4) имеем $L(z) = \infty$, а для распределения (2) $L(z) = c_1 \sqrt{1 - \frac{r^2}{a_1^2}}$.

Далее, из уравнения (8) находим распределение угловой скорости вращения газопылевой составляющей:

$$\omega^2 = \frac{1}{r\rho} \frac{\partial p}{\partial r} - \frac{1}{r} \frac{\partial \Phi}{\partial r}.$$
 (11)

Из (10), (11) следует, что в случае линейной суперпозиции потенциалов, например, $\Phi = \Phi_1 + \Phi_2$ квадрат результирующей угловой скорости вращения вещества также будет суперпозицией: $\omega^2 = \omega_1^2 + \omega_2^2$.

3. Частные случаи нахождения угловой скорости течения газопылевого вещества

Для некоторых сочетаний гравитационных потенциалов (5)–(7) и распределений плотности (1)–(4) определим конкретные выражения для угловой скорости вращения:

1. Течение в потенциале (5)

а) Комбинация потенциала (5) и распределения плотности (1) при $n = \frac{1}{2}$ дает угловую скорость течения вещества:

$$\omega^{2} = \frac{\Phi_{0}\left(\frac{c_{1}^{2}}{a_{1}^{2}} - \frac{c^{2}}{a^{2}}\right)\left[2c\,c_{1}\sqrt{1 + \frac{r^{2}}{a^{2}} + \frac{z^{2}}{c^{2}}}\sqrt{1 + \frac{r^{2}}{a_{1}^{2}} + \frac{z^{2}}{c_{1}^{2}}} - \left(\frac{c_{1}^{2}}{a_{1}^{2}} + \frac{c^{2}}{a^{2}}\right)r^{2} - 2z^{2} - c_{1}^{2} - c^{2}}\right]}{\sqrt{1 + \frac{r^{2}}{a^{2}} + \frac{z^{2}}{c^{2}}}\left[\left(\frac{c_{1}^{2}}{a_{1}^{2}} - \frac{c^{2}}{a^{2}}\right)r^{2} - c^{2} + c_{1}^{2}\right]^{2}}$$
(12)

б) Для распределения плотности (2) при $n\!=\!1$

$$\omega^{2} = \frac{2\Phi_{0}\left(\frac{c^{2}}{a^{2}} - \frac{c_{1}^{2}}{a_{1}^{2}}\right)}{c_{1}^{2}\left(1 - \frac{r^{2}}{2} - \frac{z^{2}}{2}\right)} \left(\frac{1}{\sqrt{1 + \frac{r^{2}}{a^{2}} + \frac{z^{2}}{a^{2}}}} - \frac{c}{\sqrt{c_{1}^{2} + c^{2} + \left(\frac{c^{2}}{a^{2}} - \frac{c_{1}^{2}}{a^{2}}\right)r^{2}}}\right)$$
(13)

$$C_{1}^{2} \left(1 - \frac{1}{a_{1}^{2}} - \frac{1}{c_{1}^{2}} \right) \left(\sqrt{1 + \frac{1}{a^{2}} + \frac{1}{c^{2}}} \sqrt{c_{1}^{2} + c^{2} + \left(\frac{1}{a^{2}} - \frac{1}{a_{1}^{2}}\right) r^{2}} \right)$$

$$123$$

в) Для распределения плотности (3)

$$\omega^{2} = \frac{2\Phi_{0}}{c_{1}^{2}} \left(\frac{c^{2}}{a^{2}} - \frac{c_{1}^{2}}{a_{1}^{2}} \right) \times \left[\frac{c\sqrt{\pi}}{c_{1}} \left[\operatorname{erf} \left(\frac{c}{c_{1}} \sqrt{1 + \frac{r^{2}}{a^{2}} + \frac{z^{2}}{c^{2}}} \right) - 1 \right] \cdot \exp \left[\frac{c^{2}}{c_{1}^{2}} \left(1 + \frac{r^{2}}{a^{2}} + \frac{z^{2}}{c^{2}} \right) \right] + \frac{1}{\sqrt{1 + \frac{r^{2}}{a^{2}} + \frac{z^{2}}{c^{2}}}} \right],$$
(14)

где $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt$ – интеграл ошибок. г) Для распределения плотности (4)

$$\omega^{2} = \frac{2\rho_{1}\Phi_{0}\left[c_{1}^{2} + \left(\frac{c^{2}}{a^{2}} - \frac{c_{1}^{2}}{a_{1}^{2}}\right)r^{2}\right]}{c_{1}^{2}\left[\rho_{0}a_{1}^{2} + \rho_{1}r^{2}\exp\left(-\frac{r^{2}}{a_{1}^{2}} - \frac{z^{2}}{c_{1}^{2}}\right)\right]} \times \left[\frac{c\sqrt{\pi}}{c_{1}}\left[\operatorname{erf}\left(\frac{c}{c_{1}}\sqrt{1 + \frac{r^{2}}{a^{2}} + \frac{z^{2}}{c^{2}}}\right) - 1\right] \cdot \exp\left[\frac{c^{2}}{c_{1}^{2}} + \left(\frac{c^{2}}{a^{2}} - \frac{c_{1}^{2}}{a_{1}^{2}}\right)\frac{r^{2}}{c_{1}^{2}}\right] + \frac{\exp\left(-\frac{r^{2}}{a_{1}^{2}} - \frac{z^{2}}{c_{1}^{2}}\right)}{\sqrt{1 + \frac{r^{2}}{a^{2}} + \frac{z^{2}}{c^{2}}}\right]$$
(15)

- 2. Течение в потенциале (6)
 - а) Для распределения плотности (1) при $n = \frac{1}{2}$

$$\omega^{2} = \frac{m\left(\frac{1}{c_{1}^{2}} - \frac{1}{a_{1}^{2}}\right)\left[-\frac{2}{c_{1}}\sqrt{1 + \frac{r^{2}}{a_{1}^{2}} + \frac{z^{2}}{c_{1}^{2}}}\sqrt{r^{2} + z^{2}} + \left(\frac{1}{c_{1}^{2}} + \frac{1}{a_{1}^{2}}\right)r^{2} + \frac{2z^{2}}{c_{1}^{2}} + 1\right]}{\sqrt{r^{2} + z^{2}}\left[1 + \left(\frac{1}{a_{1}^{2}} - \frac{1}{c_{1}^{2}}\right)r^{2}\right]^{2}}$$
(16)

б) Для распределения плотности (2) при n = 1

$$\omega^{2} = 2m \left(\frac{1}{a_{1}^{2}} - \frac{1}{c_{1}^{2}}\right) \left(1 - \frac{r^{2}}{a_{1}^{2}} - \frac{z^{2}}{c_{1}^{2}}\right)^{-1} \left[\left(1 + \left(\frac{1}{c_{1}^{2}} - \frac{1}{a_{1}^{2}}\right)r^{2}c_{1}\right)^{-1/2} - \frac{1}{\sqrt{r^{2} + z^{2}}} \right]$$
(17)

в) Для распределения плотности (3)

$$\omega^{2} = 2m \left(\frac{1}{c_{1}^{2}} - \frac{1}{a_{1}^{2}}\right) \left[\frac{1}{\sqrt{r^{2} + z^{2}}} + \frac{\sqrt{\pi}}{c_{1}} \left(\operatorname{erf}\frac{\sqrt{r^{2} + z^{2}}}{c_{1}} - 1\right) \cdot \exp\left(\frac{r^{2} + z^{2}}{c_{1}^{2}}\right)\right]$$
(18)

г) Для распределения плотности (4)

$$\omega^{2} = \frac{2m\rho_{1} \left[1 + \left(\frac{1}{c_{1}^{2}} - \frac{1}{a_{1}^{2}} \right) r^{2} \right]}{a_{1}^{2}\rho_{0} + \rho_{1}r^{2} \exp\left(-\frac{r^{2}}{a_{1}^{2}} - \frac{z^{2}}{c_{1}^{2}} \right)} \times \left[\frac{\exp\left(-\frac{r^{2}}{a_{1}^{2}} - \frac{z^{2}}{c_{1}^{2}} \right)}{\sqrt{r^{2} + z^{2}}} + \frac{\sqrt{\pi}}{c_{1}} \exp\left[\left(\frac{1}{c_{1}^{2}} - \frac{1}{a_{1}^{2}} \right) r^{2} \right] \cdot \left(\operatorname{erf} \frac{\sqrt{r^{2} + z^{2}}}{c_{1}} - 1 \right) \right]$$
(19)

3. При рассмотрении течения в потенциале (7) для распределений плотности (1) и (3) мы ограничим газопылевую конфигурацию сфероидальной поверхностью $L(z) = kc_1 \sqrt{1 - \frac{r^2}{k^2 a_1^2}}$, совпадающей с124Антонов В.А., Железняк О.А., Терещенко А.А.

поверхностью равной плотности, приняв, что за ее пределами $\rho = 0$ (в противном случае величина газового давления обращается в ∞ во всем пространстве). Итак, для распределений плотности (1) и (2) при n = 1 и $n = \frac{1}{2}$, а также для распределения (3) вращение газа твердотельное

$$\omega^2 = \frac{2}{a^2} - \frac{2c_1^2}{a_1^2 c^2} \tag{20}$$

Для распределения плотности (4) получаем

$$\omega^{2} = \frac{\frac{2a_{1}^{2}\rho_{0}}{c^{2}}\left(\frac{c^{2}}{a^{2}} - \frac{c_{1}^{2}}{a_{1}^{2}}\right) + \frac{2\rho_{1}}{c^{2}}\left[\left(c_{1}^{2} + \left(\frac{c^{2}}{a^{2}} - \frac{c_{1}^{2}}{a_{1}^{2}}\right)r^{2}\right)\exp\left(-\frac{r^{2}}{a_{1}^{2}} - \frac{z^{2}}{c_{1}^{2}}\right) - c_{1}^{2}e^{-k^{2}}\right]}{a_{1}^{2}\rho_{0} + \rho_{1}r^{2}\exp\left(-\frac{r^{2}}{a_{1}^{2}} - \frac{z^{2}}{c_{1}^{2}}\right)}$$
(21)

Из физических соображений ясно, что во всей области пространства, заполненной газопылевым веществом, должно выполняться неравенство $\omega^2 > 0$, что налагает ограничение на коэффициенты a, c, a_1, c_1 , входящие в выражения (1)–(7). Несмотря на сложность выражений (12)–(21), указанное ограничение имеет простой вид: $\frac{c}{a} > \frac{c_1}{a_1}$. Для сферически симметричного потенциала (6) сжатие эквипотенциальных поверхностей равно 1, а потому имеем просто $\frac{c_1}{a_1} < 1$. Кроме того, для сочетания потенциала (5) и распределения (1) добавляется ограничение $c_1 > c$.

Общий характер распределения линейной скорости вращения $v(r, z) = \omega(r, z)r$ вещества для распределений плотности (1)–(3) качественно схожий: при удалении от оси вращения сначала следует область, в которой вращение близко к твердотельному, а затем после достижения максимума линейная скорость вращения плавно убывает; при удалении от экваториальной плоскости линейная скорость убывает монотонно (рис.1).

4. Выводы

Рассмотренные простые модели дифференциального течения газопылевой среды в гравитационных полях отражают типичные глобальные свойства строения и динамики галактик. В результате проведенных исследований можно сделать следующие выводы:

1) угловая скорость вращения $\omega(r, z)$ в реальных моделях убывает с увеличением расстояния от оси вращения, а также от экваториальной плоскости;

2) равновесные вращающиеся конфигурации газопылевого вещества могут быть сплюснутыми больше, чем эквипотенциальные поверхности $(c/a > c_1/a_1)$;

3) уточнить параметры модели могут помочь детальные спектральные наблюдения, при помощи которых определяется не только кривая вращения v(r), но и зависимость линейной скорости

Рис. 1. Пример зависимости линейной скорости течения газопылевого вещества в потенциале (5) при распределении плотности (1) от r и z ($\Phi_0 = 1$, $n = \frac{1}{2}$, $\rho_0 = 1$, $a_1 = 0.8$, $c_1 = 0.45$, a = 1, c = 0.6)

125

вращения v от высоты над экваториальной плоскостью.

Все выводы могут быть распространены не только на движение газопылевого вещества в галактиках, но и на динамику протопланетных и протозвездных дисков, которые наблюдаются вокруг молодых звезд.

Нужно отметить, что при рассмотрении более сложных моделей течений газопылевого вещества в гравитационных полях необходим учет сил вязкости, а также возможного возникновения меридиональной циркуляции [7–10], что в свою очередь требует отдельного исследования.

- 1. Саслау У. Гравитационная физика звездных и галактических систем. М.: Мир, 1989. 544 с.
- 2. Zeilinger W.W., et al. // As. Ap. Suppl. Ser. 1996. 120. P. 257-266.
- 3. Петровская И.В. // Вестник ЛГУ. 1970. **19**. С. 129–136.
- 4. Brighenti F., Mathews W.G. // Astrophys.J. 1996. 470. P. 747-761.
- 5. Абрамян М.Г., Оганесян Р.С. // Астрофизика. 1977. 13, № 2. С. 255–262.
- 6. Абрамян М.Г. // Астрофизика. 1975. 11, № 3. С. 487–498.
- 7. Рузмайкина Т.В., Сафронов В.С. // Астрон.ж. 1976. 53, № 4. С. 860–866.
- 8. Тассуль Ж.Л. Теория вращающихся звезд. М.: Мир, 1982. 472 с.
- 9. Osaki Y. // Publ. Astron. Soc. Japan. 1972. 24. P. 509–516.
- 10. Goldreich P., Schubert G. // Astrophys.J. 1967. 150. P. 571-587.

Поступила в редакцию 16.12.2002

Антонов В.А., Железняк О.А., Терещенко А.А.