Вісник	Astronomical School's Report	ISSN 1607-2855	
Астрономічної		Том 2 • № 2 • 2001	C. 86 – 95

УДК 524.7

Образование нестационарных газопылевых структур в трехосных прецессирующих галактиках

О.А. Железняк, А.А. Терещенко

Лаборатория теоретической астрофизики и гравитации Уманского государственного педагогического университета

Рассматривается модель выброса газопылевого вещества из центра трехосной прецессирующей галактики с последующим формированием нестационарных газопылевых дисков. Показано, что ориентация и распределение плотности в таких дисках зависит от параметров гравитационного поля галактики, угловой скорости ее вращения и угла прецессии.

УТВОРЕННЯ НЕСТАЦІОНАРНИХ ГАЗОПИЛОВИХ СТРУКТУР В ТРИВІСНИХ ПРЕЦЕСУЮЧИХ ГАЛАКТИКАХ, Железняк О.О., Терещенко А.О. – Розглядається модель викиду газопилової речовини з центру тривісної прецесуючої галактики з наступним утворенням нестаціонарних газопилових дисків. Показано, що орієнтація та розподіл густини в таких дисках залежить від параметрів гравітаційного поля галактики, кутової швидкості її обертання та кута прецесії.

FORMATION OF NON-STATIONARY GAS-DUST STRUCTURES IN TRIAXIAL PRECESSING GALAXIES, by Zheleznyak O.A., Tereshchenko A.A. – The model of ejection of gas-dust matter from the center of a triaxial precessing galaxy followed by formation of non-stationary gas-dust disks is considered. Orientation and density distribution in such disks depend on the parameters of the gravitational potential of the galaxy, the galaxy's angular velocity and the precession angle.

1. ВВЕДЕНИЕ

Динамические свойства галактика определяются их происхождением, а в последующем – взаимодействием с окружающей средой и ближайшими соседями. Взаимодействие галактик с межгалактической средой носит сложный, зачастую циклический характер, который определяется внутренними активными процессами. При этом происходит смена стадии аккреции межгалактической материи на стадию истечения (выметания) газа путем радиационных газодинамических процессов [4]. Указанная цикличность часто может порождать нестационарные газопылевые структуры в виде оболочек, дисков и различного вида колец.

С другой стороны, взаимодействие между галактиками существенно влияет на их форму и перераспределение углового момента. Иначе говоря, вероятно возникновение трехосности в галактиках, на что указывают астрономические наблюдения [1].

Упомянутые процессы гравитационного взаимодействия могут порождать прецессию и так называемое «кувыркание» [6]. Подтверждением сказанного являются результаты спектральных наблюдений некоторых эллиптических и веретенообразных галактик, которые вращаются вокруг двух осей и имеют различные особенности динамики звездной и газопылевой составляющих [5]. Точнее говоря, известны случаи, когда газопылевая среда в галактике вращается в противоположную сторону относительно звездной; газопылевая среда может занимать наклонное положение, и вектор углового момента газопылевого диска образует некоторый угол с главным моментом галактики [2, 3, 7].

Поскольку трехосность и прецессия могут вносить существенные особенности в динамику газопылевого вещества, имеет смысл исследовать две динамические модели образования газопылевых структур в таких галактиках: аккреция межгалактического вещества и выбросы газа из ядерной области галактики. В связи с тем, что в данной работе исследуются глобальные динамические процессы, то можно пренебречь самогравитацией газа и некоторыми особенностями внутреннего гравитационного потенциала галактики. При учете реальных физических характеристик газа и вида нестационарного гравитационного потенциала галактик возникают весьма сложные задачи, не поддающиеся аналитическому рассмотрению, а их результаты существенно зависят от плохо известных начальных условий.

2. УРАВНЕНИЯ ДВИЖЕНИЯ И ИХ РЕШЕНИЯ

Будем считать, что выброшенные из центра галактики частицы движутся под действием только лишь двух сил: силы тяготения, создаваемой внутренним гравитационным полем галактики, и силы трения. Примем, что гравитационный потенциал галактики соответствует внутреннему потенциалу однородного трехосного эллипсоида:

$$\Phi = -\frac{1}{2} \left(A^2 x^2 + B^2 y^2 + C^2 z^2 \right) \tag{1}$$

Кроме того, будем предполагать, что сила трения, действующая на движущуюся частицу, пропорциональна скорости относительного движения частицы и окружающей среды ($\vec{F}_{mp} = -c \vec{v}$, здесь c -коэффициент трения, в дальнейшем его будем считать малой величиной). Во вращающейся с угловой скоростью Ω системе координат, оси которой совпадают с главными осями эллипсоида, уравнения движения частицы при указанных предположениях принимают вид:

$$\begin{cases} \ddot{x} = (\Omega^2 - A^2)x + 2\Omega \dot{y} - c\dot{x} \\ \ddot{y} = (\Omega^2 - B^2)y - 2\Omega \dot{x} - c\dot{y} \\ \ddot{z} = -C^2 z - c\dot{z} \end{cases}$$
(2)

Выбор вида внутреннего потенциала галактики (1) и вида выражения для силы трения обусловлен тем, что в данном случае уравнения движения (2) допускают простые по структуре аналитические решения.

Разлет частиц газопылевого вещества из центра галактики означает, что траектория каждой частицы определяется начальными условиями:

$$x(0) = 0, \ y(0) = 0, \ z(0) = 0, \ \dot{x}(0) = v_{ox}, \ \dot{y}(0) = v_{oy}, \ \dot{z}(0) = v_{oz}.$$
(3)

Решая уравнения (2) с учетом начальных условий (3), получим связь между координатами частицы в заданный момент времени *t* и ее компонентами ее начальной скорости:

$$\begin{cases} x(t) = \frac{1}{p} \left(g_{11} \, \mathbf{v}_{ox} + g_{12} \, \mathbf{v}_{oy} \right) \\ y(t) = \frac{1}{p} \left(g_{21} \, \mathbf{v}_{ox} + g_{22} \, \mathbf{v}_{oy} \right), \\ z(t) = g_{31} \, \mathbf{v}_{oz} \end{cases}$$
(4)

где *g_{ik}* – это заданные функции времени:

$$g_{11} = \left(e^{-\mu_1 t} \cos \omega_1 t - e^{-\mu_2 t} \cos \omega_2 t\right) \left[\left((\mu_2 - \mu_1)k_2 - \omega_1 k_1\right)k_4 + \omega_2 k_2 k_3 \right] - e^{-\mu_1 t} \sin \omega_1 t \left[\left(-\omega_2 (k_3 + k_4) + k_1 (\mu_2 - \mu_1) + \omega_1 k_2\right)k_4 + \omega_2 k_1 k_3 \right] + e^{-\mu_2 t} \sin \omega_2 t \left[\left((\mu_2 - \mu_1 - \omega_2)k_2 - \omega_1 k_1\right)k_4 + \omega_1 \left(k_1^2 + k_2^2\right) \right]$$
(5)

0	
0	1

$$g_{12} = \left(e^{-\mu_1 t} \cos \omega_1 t - e^{-\mu_2 t} \cos \omega_2 t\right) \left[\omega_1 k_4 - \omega_2 k_2\right] + e^{-\mu_1 t} \sin \omega_1 t \left[(\mu_1 - \mu_2)k_4 + (k_4 - k_1)\omega_2\right] - e^{-\mu_2 t} \sin \omega_2 t \left[((\mu_1 - \mu_2)k_2 - (k_4 - k_1)\omega_1)\right]$$
(6)

$$g_{21} = \left(e^{-\mu_1 t} \cos \omega_1 t - e^{-\mu_2 t} \cos \omega_2 t\right) \left[(k_3 + k_4) \omega_2 k_2 - (k_1^2 + k_2^2) \omega_1 \right] k_4 + e^{-\mu_1 t} \sin \omega_1 t \left[\left[(k_1^2 + k_2^2) k_3 - (k_3 + k_4) k_1 k_4 \right] \omega_4 + (k_1^2 + k_2^2) (\mu_2 - \mu_1) k_4 \right] - (7)$$

$$= e^{-\mu_{1}t} \sin \omega_{2}t \left[(k_{1} + k_{2})k_{3}\omega_{1} - (-k_{4}(k_{3} + k_{4})((\mu_{1} - \mu_{2})k_{2} + \omega_{1}k_{1}) + (k_{1} + k_{2})\omega_{1}k_{3}) \right]$$

$$g_{22} = \left(e^{-\mu_{1}t} \cos \omega_{1}t - e^{-\mu_{2}t} \cos \omega_{2}t \right) \left[(\omega_{1}k_{1} - (\mu_{1} - \mu_{2} + \omega_{2})k_{2}) k_{4} - e^{-\mu_{1}t} \sin \omega_{1}t \left[((\mu_{2} - \mu_{1} - \omega_{2})k_{1} - \omega_{1}k_{2}) k_{4} + (k_{1}^{2} + k_{2}^{2})\omega_{2} \right] +$$
(8)

$$+ e^{-\mu_2 t} \sin \omega_2 t \left[(k_2 \omega_2 - (k_3 + k_4) \omega_1) k_4 + ((\mu_2 - \mu_1) k_2 + \omega_1 k_1) k_3 \right]$$

= $e^{-\frac{ct}{2}} \sin \left(t \sqrt{C^2 - \frac{1}{4}c^2} \right) / \sqrt{C^2 - \frac{1}{4}c^2}$ (9)

где обозначено

 g_{31}

$$p = \left[\omega_1^2 + \omega_2^2 + (\mu_1 - \mu_2)^2\right] k_2 k_4 - \left[\left(k_2^2 + k_2^4\right)\omega_1 + \left(k_4 - k_3\right)(\mu_2 - \mu_1)k_2 + (k_1 - k_4)(k_1 - k_3)\omega_1\right]\omega_2$$

$$k_1 = \frac{c - \mu_1(s_1 + 1)}{2\Omega}, \quad k_2 = \frac{(s_1 - 1)\omega_1}{2\Omega}, \quad k_3 = \frac{c - \mu_2(s_2 + 1)}{2\Omega}, \quad k_4 = \frac{(s_2 - 1)\omega_2}{2\Omega}, \quad s_{1,2} = \frac{A^2 - \Omega^2}{\omega_{1,2}^2 + \mu_{1,2}^2}$$

Через величины ω_{1,2} и μ_{1,2} выражаются корни характеристического уравнения, составленного для двух первых уравнений системы (2):

$$\lambda^{4} - 2ic\lambda^{3} - (A^{2} + B^{2} + 2\Omega^{2} + c^{2})\lambda^{2} + (A^{2} + B^{2} - 2\Omega^{2})ci\lambda + \Omega^{4} - (A^{2} + B^{2})\Omega^{2} + A^{2}B^{2} = 0$$
(10)
Корни уравнения (10) вообще говоря являются комплексными:
$$\lambda_{1,2} = \pm \omega_{1} + i\mu_{1}, \ \lambda_{3,4} = \pm \omega_{2} + i\mu_{2}.$$

Точные аналитические выражения для ω_{1,2} и μ_{1,2} довольно объемны, однако в случае, когда сила трения мала по сравнению с силами тяготения и инерции, можно получить приближенные выражения:

$$\omega_{1,2} = \frac{1}{2}\sqrt{4\Omega^2 + 2(A^2 + B^2) \pm 2\sqrt{8\Omega^2(A^2 + B^2) + (A^2 - B^2)^2} + O(c^2)}$$
(11)

$$\mu_{1,2} = \left(\frac{1}{2} \pm \frac{2\Omega^2}{\sqrt{8\Omega^2 (A^2 + B^2) + (A^2 - B^2)^2}}\right)c + O(c^3)$$
(12)

Заметим, что корни уравнения (10) являются комплексными только при наличии силы трения (т.е. при c > 0). Иначе, в случае ее отсутствия (c = 0) из (10) следовало бы, что $\mu_{1,2} = 0$, а формула (11) становилась бы точной (при этом решения (4) описывали бы движение частицы как наложение колебаний с частотами ω_1 , ω_2).

В дальнейшем будем считать, что A = 1, B > A. По причине объемности выражений (5)–(7) получаемые в дальнейшем аналитические результаты нельзя будет записать в компактной форме; по этой причине мы будем вынуждены наложить ограничения $c \ll 1$, $\Omega \ll 1$, т.е. считать силу трения и силы инерции малыми – при этом, разлагая в ряд получаемые выражения, можно будет ограничиться первыми степенями c и Ω .

Возможность образования газопылевых дисков вытекает из свойств решения (4) уравнений движения: в некоторый момент времени все частицы вещества, одновременно вылетевшие из центра, сталкиваются в одной плоскости. Тут возможны два случая: указанная плоскость может либо совпадать с экваториальной плоскостью *Оху*, либо быть меридиональной, т.е. проходить через ось *Oz*.

3. ОБРАЗОВАНИЕ ЭКВАТОРИАЛЬНОГО ДИСКА

Рассмотрим вначале случай, при котором вылетевшие из центра частицы сталкиваются в экваториальной плоскости, т.е. в некоторый момент времени $t_{3\kappa\theta}$ для координат всех частиц справедливо z = 0.

Из (4) и (9) следует, что это произойдет в момент времени $t_{_{3KB}} = \frac{2\pi}{\sqrt{4C^2 - c^2}}$. Обозначим через G_{11}, G_{12}, G_{12}

 G_{21} , G_{22} значения функций g_{11} , g_{12} , g_{21} , g_{22} , вычисленные при $t = t_{3\kappa_6}$. Тогда координаты (x, y) отдельной частицы будут линейно зависеть от компонент ее начальной скорости :

$$\begin{cases} x = \frac{1}{p} (G_{11} \mathbf{v}_{ox} + G_{12} \mathbf{v}_{oy}) \\ y = \frac{1}{p} (G_{21} \mathbf{v}_{ox} + G_{22} \mathbf{v}_{oy}) \end{cases}$$
(13)

Если известна плотность распределения частиц по начальным скоростям $f(v_{x0}, v_{y0}, v_{z0})$, то соотношения (13) позволят определить распределение поверхностной плотности вещества, выпавшего на экваториальную плоскость:

$$\sigma(x,y) = \int f\left(\mathbf{v}_{ox}\left(x,y\right), \mathbf{v}_{oy}\left(x,y\right), \mathbf{v}_{oz}\right) d\mathbf{v}_{oz} \left| \frac{\partial(\mathbf{v}_{ox},\mathbf{v}_{oy})}{\partial(x,y)} \right|$$
(14)

Полученный из (13) якобиан $J = \frac{\partial (\mathbf{v}_{ox}, \mathbf{v}_{oy})}{\partial (x, y)} = \frac{p^2}{G_{11}G_{22} - G_{12}G_{21}}$ является постоянной величиной.

Рассмотрим два простых случая распределения частиц выброшенного вещества по начальным скоростям.

1) Пусть начальные скорости частиц имеют равномерное изотропное распределение вида

$$f = \begin{cases} f_0 & \text{при} \quad 0 \le v_{ox}^2 + v_{oy}^2 + v_{oz}^2 \le V^2 \\ 0 & \text{при} \quad v_{ox}^2 + v_{oy}^2 + v_{oz}^2 > V^2 \end{cases},$$
(15)

т.е. начальные скорости частиц распределены равномерно от 0 до некоторого максимального значения V.

Тогда, интегрируя в (14) по v_{oz} в промежутке от $-\sqrt{V^2 - v_{ox}^2 - v_{oy}^2}$ до $+\sqrt{V^2 - v_{ox}^2 - v_{oy}^2}$, получим распределение поверхностной плотности на экваториальном диске:

$$\sigma(x,y) = 2f_0 J \sqrt{V^2 - \frac{J^2}{p^2} \left[\left(G_{21}^2 + G_{22}^2 \right) x^2 - 2x y \left(G_{12}^2 G_{22}^2 + G_{11}^2 G_{21}^2 \right) + \left(G_{11}^2 + G_{12}^2 \right) y^2 \right]}, \quad (16)$$

где $J = G_{11}^2 G_{22}^2 - G_{12}^2 G_{21}^2$. Нетрудно видеть, что экваториальный газопылевой диск будет иметь форму эллипса, который повернут в плоскости *xy* на угол

$$\varphi = \frac{1}{2} \operatorname{arctg} \left(\frac{2 \left(G_{11}^2 G_{21}^2 + G_{12}^2 G_{22}^2 \right)}{G_{11}^2 + G_{12}^2 + G_{21}^2 + G_{21}^2 + G_{22}^2} \right)$$

против направления вращения галактики.

При отсутствии силы трения (*c* = 0) и в предположении малости угловой скорости вращения галактики Ω получим приближенное выражение для угла поворота φ:

$$\varphi \approx \frac{2B\left[\sin\frac{\pi B}{C} + \cos\frac{\pi B}{C} - \cos\frac{\pi}{C}\right] \cdot \left[B\sin\frac{\pi}{C} - \sin\frac{\pi B}{C}\right]}{\left(B^2 - 1\right)\left[B^2\sin^2\frac{\pi}{C} + \sin^2\frac{\pi B}{C}\right]}\Omega$$

0	c
х	L
o	~

Кроме того, из (16) следует, что распределение плотности в экваториальном диске будет эллиптическим с максимумом плотности в центре.

 Более сложным вариантом является случай шварцшильдовского распределения начальных скоростей частиц, причем это распределение можно принять анизотропным путем введения некоторых коэффициентов α, β, γ,:

$$f = \frac{m}{\sqrt{\alpha\beta\gamma}} \left(\frac{s}{\pi}\right)^{3/2} \exp\left[-s\left(\frac{v_{ox}^2}{\alpha} + \frac{v_{oy}^2}{\beta} + \frac{v_{oz}^2}{\gamma}\right)\right]$$
(17)

Здесь *s* – константа, а константа *m* – полная масса вылетевшего вещества.

Интегрируя в (14) по v_{oz} в промежутке от $-\infty$ до $+\infty$, получим:

$$\sigma(x,y) = \frac{m s}{\pi \sqrt{\alpha \beta \gamma}} \exp \left[-\frac{sJ^2}{\alpha \beta P^2} \left[\left(\alpha G_{21}^2 + \beta G_{22}^2 \right) x^2 - 2 \left(\alpha G_{11} G_{21} + \beta G_{12} G_{22} \right) xy + \left(\alpha G_{11}^2 + \beta G_{12}^2 \right) y^2 \right] \right]$$

Очевидно, в данном случае распределение плотности в экваториальном диске также эллиптическое. Линии равной плотности представляют собой эллипсы, повернутые на угол φ :

$$\varphi = -\frac{1}{2} \arctan \left[\frac{2(\alpha G_{11}G_{21} + \beta G_{12}G_{22})}{\alpha (G_{11}^2 - G_{21}^2) + \beta (G_{12}^2 - G_{22}^2)} \right] \approx \frac{2B\Omega}{B^2 - 1} \frac{\left[\cos \frac{\pi B}{C} - \cos \frac{\pi}{C} \right] B \alpha \sin \frac{\pi}{C} + \left[B \sin \frac{\pi}{C} + \cos \frac{\pi}{C} - \cos \frac{\pi B}{C} - \sin \frac{\pi B}{C} \right] \beta \sin \frac{\pi B}{C}}{\beta \sin^2 \frac{\pi B}{C} - B^2 \alpha \sin^2 \frac{\pi}{C}}$$

3. ОБРАЗОВАНИЕ МЕРИДИОНАЛЬНОГО ДИСКА

Другим случаем образования газопылевых дисков является столкновение частиц в меридиональной плоскости галактики в некоторый момент времени $t = t_{mep}$, когда координаты x и y всех частиц связаны соотношением x/y = const. Очевидно, в этом случае из первых двух уравнений системы (4) следует, что

$$\begin{vmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{vmatrix} = 0$$
(18)

(теперь через G_{11} , G_{12} , G_{21} , G_{22} мы обозначаем значения функций g_{11} , g_{12} , g_{21} , g_{22} , вычисленные при $t = t_{mep}$). Раскрывая определитель (18), мы получим уравнение для нахождения t_{mep} , которое разрешить можно только численно. Однако в предположении малости угловой скорости вращения галактики и силы трения можно получить приближенное значения для t_{mep} . Учитывая, что при отсутствии трения и вращения галактики столкновение в меридиональной плоскости произойдет в момент времени $t_{mep} = \frac{\pi}{B}$, сделаем в (18) подстановку $t_{mep} = \frac{\pi}{B} + \tau$ и будем искать приближенное выражение для малой поправки τ . Линеаризируя и разрешая относительно τ , а затем ограничиваясь малыми степенями c и Ω , получаем:

$$\tau \approx \left[\left(-\frac{\pi}{2} \left(3B^2 + 1 \right) \cos \frac{\pi}{B} + \frac{B^3 \left(B^4 - 14B^2 - 19 \right) \sin \frac{\pi}{B}}{4 \left(B^2 - 1 \right)} + \frac{\pi}{4} \left(B^4 + 6B^2 + 1 \right) \right) c^2 - 8B^3 \sin \frac{\pi}{B} - \frac{\pi}{2} \left(3B^2 + 1 \right) \left(B^2 - 1 \right) \left(\cos \frac{\pi}{B} - 1 \right) \right] \frac{\Omega^2}{B^3 \left(B^2 - 1 \right)^2 \left(\cos \frac{\pi}{B} - 1 \right)} - \frac{c^2 \operatorname{ctg} \frac{\pi}{2B}}{2 \left(B^2 - 1 \right)}$$
(19)

При отсутствии трения выражение для т упрощается:

$$\tau \approx \frac{\Omega^2}{B^2 - 1} \left[\frac{8 \operatorname{ctg} \frac{\pi}{2B}}{B^2 - 1} - \frac{\pi \left(3B^2 + 1 \right)}{2B^3} \right]$$
(20)

График зависимости τ от *B* и Ω приведен на рис.1; по нему видно, что вращение несколько увеличивает время полета частиц до столкновения в меридиональной плоскости. Отметим, что τ достигает максимального значения $\tau_{\text{max}} \approx 0.081554$ при $B \approx 1.29806$, $\Omega \rightarrow 1$.

Если галактика не вращается, то меридиональный диск совпадает с плоскостью Oxz, однако при вращении плоскость диска проходит через ось z под некоторым углом φ к оси x. Из x/y = const следует,

что tg $\varphi = \frac{G_{21}}{G_{11}}$. Вычисляя G_{21} , G_{11} при $t = \frac{\pi}{B} + \tau$ в соответствии с (20) и ограничиваясь первыми степе-

нями Ω и *с*, получим:

$$\operatorname{tg} \varphi \approx \frac{2\operatorname{ctg} \frac{\pi}{2B} - c}{\left(1 - B^2\right)} \Omega + \frac{\left(2B + c\pi\right)c^2 \operatorname{ctg} \frac{\pi}{2B}}{16B\Omega}$$
(21)

При отсутствии трения выражение (21) принимает вид

$$\operatorname{tg} \varphi \approx \frac{2\Omega \operatorname{ctg} \frac{\pi}{2B}}{1-B^2}$$
(22)

График зависимости (22) представлен на рис.2.

Для нахождения распределение поверхностной плотности в меридиональном диске установим соответствие между компонентами начальной скорости частицы (v_{ox} , v_{oy} , v_{oz}) и ее координатами $(r = \sqrt{x^2 + y^2}, z, \xi)$ на плоскости меридионального диска $(\xi - дополнительная координата, введенная$ для того, чтобы соответствие компонент начальной скорости и координат (r, z, ξ) было взаимнооднозначным):

$$= \frac{1}{p\cos\phi} \Big(G_{11} \,\mathbf{v}_{ox} + G_{12} \,\mathbf{v}_{oy} \Big), \quad z = G_{31} \,\mathbf{v}_{oz} \,, \quad \xi = \mathbf{v}_{ox}$$
(23)

ł

Рис.1. Зависимость поправки τ от Ω и В при отсутствии Рис.2. Зависимость угла поворота меридионального дистрения

ка от B и Ω при отсутствии трения

91

Тогда поверхностную плотность можно определить как

$$\sigma(r,z) = \int f\left(\mathbf{v}_{ox}\left(r,z,\xi\right), \mathbf{v}_{oy}\left(r,z,\xi\right), \mathbf{v}_{oz}\left(r,z,\xi\right)\right) d\xi \left| \frac{\partial\left(\mathbf{v}_{ox},\mathbf{v}_{oy},\mathbf{v}_{oz}\right)}{\partial\left(r,z,\xi\right)} \right|$$
(24)

где $\frac{\partial (\mathbf{v}_{ox}, \mathbf{v}_{oy}, \mathbf{v}_{oz})}{\partial (r, z, \xi)} = \frac{-p \cos \varphi}{G_{12} G_{31}}$ – якобиан, вычисленный в соответствии с (23).

1) Возьмем распределение вида (15). Пределы интегрирования по ξ найдем, подставив в уравнение $v_{ox}^2 + v_{oy}^2 + v_{oz}^2 = V^2$ значения v_{ox} , v_{oy} , v_{oz} , найденные из (23):

$$\xi_{\min}, \xi_{\max} = \frac{r \, p \, G_{11} G_{31} \cos \varphi \mp G_{12} \cos^2 \varphi \sqrt{\left(V^2 \, G_{31}^2 - z^2\right) \left(G_{11}^2 + G_{12}^2\right) - G_{31}^2 p^2 r^2 \cos^2 \varphi}}{\left(G_{11}^2 + G_{12}^2\right) G_{31}} \tag{25}$$

Интегрируя в (24) от ξ_{min} до ξ_{max} , получим искомое распределение плотности:

$$\sigma(r,z) = \frac{2f_o p \cos \varphi}{G_{31} \left(G_{11}^2 + G_{12}^2\right)} \sqrt{V^2 - \left(\frac{p \cos \varphi}{G_{11}^2 + G_{12}^2}\right)^2 r^2 - \frac{z^2}{G_{31}^2}}$$
(26)

2) Для шварцшильдовского распределения (17) начальных скоростей интегрировать по ξ будем в пределах от $-\infty$ до $+\infty$.

$$\sigma(r,z) = \frac{m \, p \, s \cos \varphi}{G_{31} \pi \sqrt{\gamma \left(\alpha G_{11}^2 + \beta G_{12}^2 \right)}} \exp \left[-\frac{p^2 \, s \cos^2 \varphi}{\alpha G_{11}^2 + \beta G_{12}^2} r^2 - \frac{s}{G_{31}^2 \gamma} z^2 \right]$$
(27)

Из (26) и (27) видно, что вещество меридиональном диске распределено по эллиптическому закону, максимальное значение поверхностная плотность имеет в центре галактики.

4. О ВЛИЯНИИ ПРЕЦЕССИИ ГАЛАКТИКИ НА ОРИЕНТАЦИЮ ДИСКОВ

Рассмотрим случай, когда выброс происходит из центра *прецессирующей* эллиптической галактики. Прецессия галактики в нашем случае означает, что вектор угловой скорости уже не совпадает с осью z, а наклонен к ней под некоторым углом α и лежит в плоскости xz. Уравнения движения без учета действия силы трения в примут вид:

$$\begin{cases} \ddot{x} = \left(\Omega^2 - A^2\right)x + 2\Omega\dot{y}\cos\alpha - z\Omega^2\sin\alpha\cos\alpha \\ \ddot{y} = \left(\Omega^2 - B^2\right)y + 2\Omega(\dot{z}\Omega\sin\alpha - \dot{x}\cos\alpha) \\ \ddot{z} = -C^2 - 2\Omega\dot{y}\sin\alpha + \Omega^2\sin\alpha(z\sin\alpha - x\cos\alpha) \end{cases}$$
(28)

Несмотря на то, что решения системы (28) более объемны, их структура при начальных условиях (5) в целом аналогична решениям (4):

$$\begin{cases} x(t) = g_{11} v_{ox} + g_{12} v_{oy} + g_{13} v_{oz} \\ y(t) = g_{21} v_{ox} + g_{22} v_{oy} + g_{23} v_{oz} \\ z(t) = g_{31} v_{ox} + g_{32} v_{oy} + g_{33} v_{oz} \end{cases}$$
(29)

здесь $g_{i,i}$ являются функциями времени:

 $g_{i,j} = h_{i,j}(1,2,3) + h_{i,j}(3,1,2) + h_{i,j}(2,3,1),$ где обозначено:

$$h_{1,1}(i,j,k) = \frac{-1}{\omega_k} \chi \zeta s f(i,j,k) \sin(\omega_k t)$$

$$\begin{aligned} h_{1,2}(i,j,k) &= \frac{1}{2\Omega\cos\alpha} \Big[\chi\zeta + \eta(i,j) - 3\omega_i^2 \omega_j^2 \Big] \cdot s \cdot f(i,j,k) \cos(\omega_k t) \\ h_{1,3}(i,j,k) &= \frac{1}{\Omega^2 \omega_k \sin\alpha\cos\alpha} \Big[\Omega^2 \zeta \sin^2 \alpha + \Big(\omega_i^2 - C^2 \Big) \Big(\omega_j^2 - C^2 \Big) \Big] s \chi f(i,j,k) \sin(\omega_k t) \\ h_{2,1}(i,j,k) &= -2\Omega \Big(\omega_k^2 - C^2 \Big) \chi \zeta \cos \alpha \cdot f(i,j,k) \cos(\omega_k t) \\ h_{2,2}(i,j,k) &= -\omega_k \Big(\chi\zeta + \eta(i,j) - 3\omega_i^2 \omega_j^2 \Big) \Big(\omega_k^2 - C^2 \Big) \cdot f(i,j,k) \sin(\omega_k t) \\ h_{2,3}(i,j,k) &= \frac{2(\omega_k^2 - C^2)}{\Omega \sin \alpha} \Big[\Omega^2 \zeta \sin^2 \alpha + \frac{C^2 \eta(i,j)}{\chi} + \omega_i^2 \omega_j^2 \Big] \chi \cdot f(i,j,k) \cos(\omega_k t) \\ h_{3,1}(i,j,k) &= \frac{1}{\omega_k} \Omega^2 \sin \alpha \cos \alpha \Big(3\omega_k^2 + \chi \Big) \chi \zeta \cdot f(i,j,k) \sin(\omega_k t) \\ h_{3,2}(i,j,k) &= -\frac{1}{2}\Omega \sin \alpha \Big(3\omega_k^2 + \chi \Big) \Big(\chi\zeta + \eta(i,j) - 3\omega_i^2 \omega_j^2 \Big) f(i,j,k) \cos(\omega_k t) \\ h_{3,3}(i,j,k) &= \frac{3\omega_k^2 + \xi}{\omega_k} \Big[\Omega^2 \zeta \sin^2 \alpha + \frac{C^2 \eta(i,j)}{\chi} + \omega_i^2 \omega_j^2 \Big] \chi \cdot f(i,j,k) \sin(\omega_k t) \\ s &= (\omega_k^2 - C^2) \Big(\omega_k^2 - \chi \Big) - \Omega^2 \Big(3\omega_k^2 + \chi \Big) \sin^2 \alpha \\ f(i,j,k) &= \frac{1}{(\omega_i^2 - \omega_k^2)} \Big(\omega_k^2 - \omega_j^2 \Big) \chi \zeta \\ \chi &= B^2 - \Omega^2, \quad \zeta = 3C^2 + B^2 - \Omega^2, \quad \eta(i,j) = \Big(C^2 - \omega_i^2 - \omega_j^2 \Big) \chi \end{aligned}$$

В приведенных выше выражениях ω_i (*i* = 1,2,3) являются положительными корнями характеристического уравнения системы (28):

$$\omega^{6} - \left(A^{2} + B^{2} + C^{2} + 2\Omega^{2}\right)\omega^{4} - \left(B^{2} - \Omega^{2}\right)\left[\left(C^{2} - A^{2}\right)\Omega^{2}\sin^{2}\alpha + \left(A^{2} - \Omega^{2}\right)C^{2}\right] + \left[\Omega^{4} + 3\left(A^{2} - C^{2}\right)\Omega^{2}\sin^{2}\alpha + \left(2C^{2} - A^{2} - B^{2}\right)\Omega^{2} + \left(A^{2} + B^{2}\right)C^{2} + A^{2}B^{2}\right]\omega^{2} = 0$$

Если ограничиться малыми значениями угла α , то можно получить приближенные выражения для ω_i :

$$\omega_{1,2} \approx \frac{D_{1,2}}{2} + \frac{\left(C^2 - A^2\right)\left(3A^2 \pm 3d + 5B^2 + 4\Omega^2\right)\Omega^2\alpha^2}{D_{1,2}\left[\pm d\left(A^2 + B^2 - 2C^2 + 2\Omega^2\right) + \left(A^2 + \Omega^2\right)\Omega^2 + \left(A^2 - B^2\right)^2\right]} \\ \omega_3 \approx C + \frac{\left(A^2 - C^2\right)\left(\Omega^2 - B^2 - 3C^2\right)\Omega^2\alpha^2}{2C\left(C^4 - \left(2\Omega^2 + A^2 + B^2\right)C^2 + \Omega^4 - \left(A^2 + B^2\right)\Omega^2 + A^2B^2\right)}$$

где обозначено

$$d = \sqrt{8\Omega^2 (A^2 + B^2) + (A^2 - B^2)^2}, \quad D_{1,2} = \sqrt{4\Omega^2 + 2(A^2 + B^2) \pm 2d}$$

Следует отметить, что на этот раз столкновение уже не происходит в указанных выше экваториальной и меридиональной плоскостях – плоскости столкновения лежат *вблизи* них.

Согласно (29), условием того, что в некоторый момент *t* времени все частицы будут находиться в одной плоскости является потеря однозначного соответствия между начальными скоростями частиц и их положениями в момент *t*:

$$\begin{vmatrix} G_{11} & G_{12} & G_{13} \\ G_{21} & G_{22} & G_{23} \\ G_{31} & G_{32} & G_{33} \end{vmatrix} = 0$$
(29)

(29) представляет собой уравнение для поиска времени столкновения (через G_{ij} . обозначены значения g_{ij} в момент столкновения).

Поступая также, как и выше, найдем приближенные выражения для времени оседания на плоскость, близкую к экваториальной:

$$t_{_{\mathcal{H}G}} \approx \frac{\pi}{C} + \left[8B \operatorname{ctg} \frac{\pi B}{2C} + \frac{\pi \left(B^2 - C^2\right) \left(B^2 + 3C^2\right)}{2C^3} \right] \frac{\Omega^2 \alpha^2}{\left(B^2 - C^2\right)^2}$$
(30)

и на плоскость, близкую к меридиональной:

$$t_{Mep} \approx \frac{\pi}{B} + \left[\left[\frac{1}{\left(B^2 - C^2\right)} \left(\frac{2\pi \left(1 - C^2\right)}{B} + \frac{8C \operatorname{ctg} \frac{\pi C}{B}}{\left(B^2 - 1\right) \left(B^2 - C^2\right)} \right) + \frac{8}{B^2 - 1} \left(-\operatorname{ctg} \frac{\pi}{2B} + \frac{B^2 C \left(B^2 - 2\right) \operatorname{ctg} \frac{\pi C}{B}}{\left(B^2 - C^2\right)^2} \right) + \frac{8}{\operatorname{stg} \frac{\pi C}{2B}} + \frac{8C}{\operatorname{stg} \frac{\pi C}{2B}} \left(\frac{B^2 - C^2}{B^2} \right)^2 \right] \alpha^2 - \frac{\left(3B^2 + 1\right)\pi}{2B^3} + \frac{8\operatorname{ctg} \frac{\pi}{2B}}{B^2 - 1} \right] \frac{\Omega^2}{B^2 - 1}$$

$$(31)$$

Заметим, что в $t_{\text{мер}}$ поправка к $t = \frac{\pi}{B}$ при $\alpha = 0$ совпадает с (20).

Подставив (29) в уравнение плоскости $n_1 x + n_2 y + z = 0$, получим:

$$(n_1G_{11} + n_2G_{21} + G_{31})x + (n_1G_{12} + n_2G_{22} + G_{32})y + (n_1G_{13} + n_2G_{23} + G_{33})z = 0$$

Приравняв нулю выражения при x, y, z, получим систему, из которой найдем величины n_l, n₂:

$$n_1 = \frac{G_{21}G_{32} - G_{31}G_{22}}{G_{11}G_{22} - G_{12}G_{21}}, \quad n_2 = \frac{G_{12}G_{31} - G_{11}G_{32}}{G_{11}G_{22} - G_{12}G_{21}}$$
(32)

которые позволяют определить компоненты единичного вектора нормали $\mathbf{n} = \{n_x, n_y, n_z\}$ к плоскости столкновения:

Рис.3. Схематическое изображение положения плоскости столкновения и вектора нормали к ней относительно координатных осей (слева – случай столкновения вблизи экваториальной плоскости, справа – вблизи меридиональной).

$$n_x = \frac{n_1}{\sqrt{n_1^2 + n_2^2 + 1}}, \quad n_y = \frac{n_2}{\sqrt{n_1^2 + n_2^2 + 1}}, \quad n_z = \frac{1}{\sqrt{n_1^2 + n_2^2 + 1}}$$
(33)

Основной эффект, который вносит прецессия – это изменение ориентации плоскости столкновения частиц. Если при отсутствии прецессии плоскость столкновения либо совпадала с плоскостью xy, либо проходила через ось z, то теперь она уже не проходит ни через одну из координатных осей. Назовем *линией узлов* прямую, вдоль которой пересекается плоскость столкновения и плоскость xy. Положение плоскости столкновения удобно охарактеризовать двумя углами (рис.3) – углом наклона θ (угол между вектором нормали n и осью z) и долготой узла ϕ (угол между осью x линией узлов):

$$\theta = \arccos n_z, \quad \varphi = \arctan \frac{n_y}{n_x}$$
(34)

Подставляя (32), (33) в (34) и используя полученные выражения для времени оседания (30), (31), а также по-прежнему ограничиваясь малыми значениями Ω и α, получим приближенные выражения для углов θ и φ, задающих положение плоскостей столкновения. Для столкновения вблизи экваториальной плоскости имеем:

$$\operatorname{ctg} \theta \approx \frac{2B\Omega \sin \alpha}{B^2 - C^2} \operatorname{ctg} \frac{\pi B}{2C}, \quad \operatorname{ctg} \phi \approx \left[\frac{\left(3 + B^2\right)\left(B^2 - C^2\right)}{2B\left(C^2 - 1\right)} \operatorname{tg} \frac{\pi B}{2C} + 2\operatorname{tg} \frac{\pi}{2C}\right] \frac{\Omega \cos \alpha}{1 - B^2}$$

Для столкновения вблизи меридиональной плоскости:

$$\sin \theta \approx \frac{2C\Omega\alpha}{B^2 - C^2} \operatorname{ctg} \frac{\pi C}{2B}, \qquad \operatorname{tg} \varphi = \frac{2\Omega\cos\alpha}{1 - B^2} \operatorname{ctg} \frac{\pi}{2B}$$

Отметим, что на рис.3 показано, в каком из октантов системы координат лежат вектора нормали, а следовательно и то, к какую сторону наклонены к осям плоскости столкновения в случае прецессии.

5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Наши исследования выявили возможность образования в трехосных вращающихся галактиках, потенциал которых квадратичен, газопылевых дисков путем оседания выброшенного из центра галактики вещества на определенную плоскость. Указанная плоскость может лежать либо в экваториальной, либо в меридиональной плоскости, либо в случае прецессии не проходить ни через одну из главных осей галактики. Особенностью образования дисков является то, что ни сила трения, ни вращение, ни прецессия галактики не препятствуют этому процессу, а лишь только изменяют ориентацию плоскости диска и распределение поверхностной плотности вещества.

- 1. Binney J. On the rotation of elliptical galaxies // MN RAS. 1978. 183. P.501-514.
- Albada van T.S., Kotanyi C.G., Schwarzschild M. A model for elliptical ratio galaxies with dust lanes // MN RAS 1982. - 198. – P.303–310.
- 3. Bertola F., Corsini E.M. Counterrotation in galaxies // IAU Symp. 1999. 186. P.149-156.
- 4. Binney J. Accretion by galaxies // ASP Conf. Ser. -2000. 197. P.107.
- 5. Christodoulou D.M., Katz N., Rix H.-W., Habe A. Dynamical evolution of highly inclined rings // Ap.J. 1992. **395**. P.113–118.
- 6. Tohline J.E., Durisen R.H. The orientation of gas disks in tumbling prolate galaxies // Ap.J. 1982. 257. P.94-102.
- 7. Антонов В.А., Железняк О.А. Формы эллиптических орбит и устойчивость газопылевых колец в прецессирующих галактиках // Кин.физ.неб.тел. 1988. **4**, № 6. С.66–72.

Поступила в редакцию 10.09.2001