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SOLUTIONS OF CLAIRAUT’S EQUATION AND THE PIECEWISE ROCHE'S DENSITY MODEL,
by Marchenko A.N. — The piecewise Roche’s model is considered as one of the possible solutions
(exact or approximate) of Clairaut, Poisson, and Williams-Adams equations. Necessary theoretical
aspects were considered before the numerical investigations, which based on the fundamental
constants of geodesy and astronomy together with global data of the seismic radial tomography of the
Earth’s interior.

PO3B’A3KH PIBHAHHA KJIEPO TA KYCKOBO-HEIIEPEPBHA MOJ/IEJIb POHLIA PA/IAJIb-
HOI'O PO3MNOALTY I'YCTHHH, Mapyerko O.M. — Kyckoeo-nenepepena modenv Powa posensoa-
EMbCA AK OOUH 3 MOICTUBUX DO38’A3Kie (mounux abo nabrudicenux) piensne Knepo, Ilyacona ma
Binvamcona-Aoamca. Posensnymo neobxioni meopemuuni acnexmy npobremu ma 6UKOHAHE YUCETbHE
odocniodcenns, wo 06a3yemvcs HA QYHOAMEHMANbHUX Cmanux 2eolesii ma acmponomii pazom 3
2nobanvHumu Oanumu paodiansHoi celicmiynoi momozpagii 3emni.

PELIEHHA YPABHEHHA KJIEPO H KYCOYHO-HEIIPEPBIBHAA MOJTEJIb POLLIA PA/THAJIb-
HOI'O PACHPE/[FEJIEHHA IVIOTHOCTH, Mapuenxo A.H. — Kycouno-nenpepuienas mooenv Poua
PaccmMampueaemcs Kak OOHO U3 B03MONCHBIX peulenull (MOYHbIX AUO0 NPUGTUN’CEHHBIX) YPABHEHUU
Knepo, Ilyaccona u Bunvsmcona-Aoamca. Paccmompenvt neobxo0umsie meopemuyeckue acnexmol
npobnemvl U BbINOIHEHO HUCIEHHOe UCCIeO08aHUe, KOMOPOe OCHOBAHO HA QYHOAMEHMANbHLIX
NOCMOAHHBIX 2e00€3UU U ACMPOHOMUYU eMecme C 2N00ANbHBIMU OAHHBIMU PAOUATLHOU CelCMUYECKOU
momozpaguu 3emuu.

Starting from the first investigations of the Earth’s density distribution some remarkable and
simple density laws were constructed by Legendre, Laplace, Darwin, Roche, etc. These laws have a
spherically symmetric density distribution with the volume density p(¢) that depends on the radial
distance £ . At the Geodetic Week97 (Berlin,1977) the author had several interesting discussions with
Prof. E.Grafarend about the exponential nature of the flattening distribution according to the Clairaut’s
equation. Maybe these meetings and discussions yielded now the presented consideration of the
famous classic laws of density in view of their mathematical descriptions. As a result, the latter is the
main goal of this paper. At present one of “the simplest way to represent an smoothed density law is

® Part of this paper was presented into Festschrift to 60® anniversary celebration of Professor E.Grafarend.
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by means of a polynomial” (Moritz,1990) e.g. in accordance with the piecewise PREM model for
every segment after the suitable stratification of the Earth. Note that such a representation follows, for
instance, from the traditional requirement to the Earth’s standard model (Dziewonski and Andeson,
1981) ... for each regions, a form of a low-degree polynomial in radius”. In spite of such “standard”
approach, the other goal of this paper is the creation of the piecewise Roche’s model. At a first look
such model has only even degrees with the maximal second degree. Nevertheless the piecewise
Roche’s model is considered here as one of the possible solutions (exact or approximate) of Clairaut,
Poisson, and Williams-Adams equations. Some theoretical aspects were considered before the
numerical investigations, which based on the fundamental constants of geodesy and astronomy
together with global data of the seismic radial tomography of the Earth’s interior.

1. BASIC RELATIONSHIPS

In view of a mathematical formulation the traditional representation of the Earth’s radial
density can be treated as a function p(¢) (continuos or piecewise in form of shells) of one variable 7

only, which is defined on the finite segment (0 </l< R) only if we assume that the figure of the

planet is spherical, (R is the mean Earth’s radius (R = 6371 km)). It is well-known also (Moritz, 1990)
that in this case the gravitational potential ¥ is equal to the gravity potential ¥, since we use such
simplest approximation of the ellipsoid by the sphere when the flattening /= 0.

First of all our initial (observed) information will be the Earth’s mass M and the mean moment
of inertia /. For latter use we shall write some well-known formulae within the sphere of the radius £
(the part of the Earth’s mass which is restricted by this radius) for the mass

¢

M(f) = anf p)x'as, M
0

where df is the element of a line and the mean density D({):
3
D)= ——M(1). 2
(0)= 7m0 #)
The value D({ ) in the form of (2) leads to the following representations
4.1-G GM
glt)=="""1-D(t) = g(t) = T ©)

of the gravity g(£ ) inside the Earth, where G=6.673-10"® [cm’s’g™"] is the gravitational constant. The
mean moment of inertia is

I(¢) = %’5 J' p(x)x*dx . ©)

We shall use also the seismic velocities ¥, and V; in the form of the function
4
® = o) =V (0} - v}, ®

by applying their grid values in accordance with (Dziewonski and Anderson, 198 1), which practically
represents the results of seismic tomography of the Earth interior.
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2. THE SIMPLEST SOLUTIONS OF CLAIRAUT’S EQUATION

Now we recollect that the famous oldest hypothesis for the Earth’s density distribution were
proposed after solutions of Clairaut’s equation for the flattening inside the Earth (see, for instance,
Bullen, 1975, Moritz, 1990).

There exist (Bullen, 1975) three famous solutions of this equation for the density p . First one

is Legandre — Laplace law
sin(Bx) _ exp(v/— 1Bx) — exp(—- 1Bx) B =const,

plx) =Py =3 = =p0 WY ©)
where we apply the dimensionless “radius-vector”
4
x=7o )
regarding to R; p, = const and may be considered here as the density at the origin.
The second one is Roche’s law
p(x)=p0(l—Kx2)=a+bx2 , ®)
where .
a=p,>0andb=p,K<0. ©

Note now that Taylor series expansion of (6) (disregarding other higher powers of x) in view
of mathematics leads to the similar expression:

p(x) = po(l —Pixz} . 109

6

The third one is G. Darwin law

plx)=C-x™, an
where C is a constant. His solution involves an ,,assumption of the form for the law of the internal
density of the planet and subsequent determination of the law of compressibility (Darwin, 1884) .
Clearly, the expression (11) represents the density with a singularity at the origin. G.Darwin noted
already that case n = 0 for the model (11) corresponds to the case of homogeneous density; for n =3
the Earth’s mass M will become infinite; for » > 3 the mass M must be assumed to be negative. As a
result, we get the inequality 0 < »n < 3 which agrees with the determination » = 1.011 (Bullen, 1975).
Thus the expression (11) represents a power function.

3. WILLIAMSON-ADAMS EQUATION

The density p may fulfil the so-called Williamson-Adams equation for each shell of the
stratified Earth under the following assumptions: the Earth is globally in hydrostatic equilibrium;
chemical composition and phase transformation are homogeneous in every shell; the temperature is
adiabatic in each shell. Thus, if we have the observable seismic velocity (5), in view of the
gravitational (3) and hydrostatic relationships

dp(¢
gradp(t) = p(t) - grad? (&) = L3~ 1) g(0) (12
finally the Williamson-Adams equation can be written as
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dinp(t) _ _ g0 1)
ar ()’
where p is the pressure inside the Earth. Thus (13) is a formula to derive the radial density distribution
from the seismic velocity data, fulfilled under the assumptions listed above.

In order to use (13) we must first try to solve this equation and to express the observed seismic
data by a suitable function of depth, separating the Earth into convenient shells. Traditionally we shall
assume that the separation into shells has to be choice at those spheres, where discontinuities in the
parameter @ or in its derivative can be observed.

It is evident that the formal solution of (13) may be obtained after the integration of
Williamson-Adams equation. The result is

Y )
x
p(6) = pyexp| - [ B e |, (14)
) o)
and we get the functional dependence for radial density as an exponential function. The right hand side
of the expression (14) is unknown. For this reason, we shall apply instead of (14) the simplest
approximating function

p(¢) = p, exp(~ yzxz) , Y = const (15)
where the power 2 is the lowest power for which we may get a non-zero value @ at the origin. Taylor
expansion of (15) leads again to the Roche’s model

p(x) = po(l—yzxz): a+bx* (16)
if we disregard other higher powers of x.

4. POISSON’S EQUATION

The density p must fulfil the Poisson’s equation for the gravity potential W =V of the Earth.
Using the spherical coordinates after simple manipulations we get for a radial layered Earth, that is for
p = p(¢), in spherical approximation

dg . 2g ~
- AV = 4nGp = 2 + =2 = M|g] . 17
mGp =t [¢] a7
The operator
d 2
==+ 18
[] TR (18)

is well-known in geodesy as Molodensky operator (see, for instance, Neyman, 1979) and it was
introduced first for the basic boundary problem of geodesy in the next form

o _

ar
M]T] = -t =Ag, (19

where T is the anomalous potential, Ag is the gravity anomaly, r is the radius-vector of an external
point (the parameter ¢ represents the radius-vector of an internal point).

The expression (19) is used for the determination of 7' on the ground of known gravity
anomalies. In the expression (17) we have as unknown values both the density and gravity inside the
Earth. Nevertheless, if the gravity g is known we get a simple rule for the computation of radial
density profile in accordance with Poisson’s equation. If gravity is known approximately, we get one
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of the most important additional information for a stable creation of the density models. So, one of our
next steps will connected with the gravity distribution inside the Earth.

5. SOME REMARKS ON THE REGULAR DARWIN’S LAW

If we want to avoid a singularity at the origin in (11), this function may be transform to the
expression
p(x) = C . x 7% = C. exp(~f(x)In x), (20)
where f{(x) is any suitable function. Such a function can represents a regular form of Darwin’s law
without a singularity at the origin with the possible expression for f(x) in the form of special
polynomial without first constant term (Marchenko and Lelgemann, 1997). The expression (20) may
be considered as an exponential function.
Taking into account the relationships (14), (15) we may try to insert into (20) another function
Ax) = F(x)/In(x) (in particular, F(x) = y’x) that leads on the whole again to
p(x) = C - exp(-F(x)), @1)
the solution (14) of Williamson-Adams equation and to the considered case (15) in particular.
Note that the direct integration of (20) is impossible for mass (1), for moment of inertia (4),
etc. The expression (21) in the form of (15):

p(¢) = py exp(- vx?) 22)
admits according to (1) and (4) the next remarkable expressions for the mass
4mp,R® s/; cerf(y - X
Mty = 47 XX o), @3)
Y 4y 2p,

and for the mean moment of inertia

5 . . 2 3
1(t) = 370oR {3‘/“_"’“7 X)_ X p(f)-(2v2x2+3)}=R—2{M(€)—4“ p(f)], 24)
3y 8y 4p, Y 3

where erf(z) is the integral of the Gaussian distribution from 0 to z or the probability integral with the
density distribution according to (22).

Thus we come to a remarkable result: one of the possible solutions of the Williamson-Adams
equation is nothing else but the famous Gaussian distribution, which may be approximated by the
Roche’s model, represented the solution of Clairaut’s equation.

So, in spite of the difference between considered above various expressions for density, we
come to their exponential nature on the whole. Roche’s model we may treat now as a truncated Taylor
series of them or as approximate solution of Williamson-Adams equation.

6. SAIGEY’S THEOREM AND THE ROCHE’S MODEL

According to the so-called Saigey theorem, the gravity g(/ ) has a maximum inside the Earth.
We shall use the Roche’s model as a basic tool for next study. So that, it is necessary to find such a
point(s), where the radial derivative fi%(e—Q is equal to zero. As a result, for the stationary point(s) we

get the well-known expression
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dg(t) _ ﬁ( D(6) + g%%} - 41:G(p(€)— %D(e)] =0 =p() = %D(E) L)

dr¢ 3
Now applying the Roche’s model (8) or (16) to (25) we get immediately
3.b(7¢ 3:b ,
Df)=a+— +—x" 26
)=a kR) =aqa 5 x 26)
and the solution of (25) for the parameter x
/ .

X =—= Vs Va . 27

R 3.4-b

Note that this root of (25) corresponds to (9) and a>0. In this case the sign of » must be
negative: b < 0. Moreover applying such dimensionless x€[0,1] and (27) the following inequality

a 9
— <, 28
-b 5 28)
may be found for the coefficients of the Roche’s model. Note only that the sign of the second radial

g()

derivative follows from the coefficient b. For this reason < 0 in the point (27) and our

function g(/ ) has a maximum only at this point.

7. PIECEWISE ROCHE’S MODEL
If a suitable stratification of the Earth leads to its division into m shells, first we shall represent
the density distribution by own Roche’s model within every shell separately
p,(x)=a, +bx*, i=1,2,.m. (29)
Inserting (29) into the expressions (1), (2), and (4) we get finally the recurrence formulae for
the mass, the mean density and mean moment of inertia, respectively:

Ml,m(e) = Ml,m—l(gm—1)+ [Mm(g) - Mm(gm—l)] > (ﬂm% < f < R) ’ (30)
3 , 3 1
Dl,m(g) = [g'}_l j Dl,m—l (zm—l) + [Dm (Z) - (Ln;_]_] Dm (Em—l)J ’ (31)
Il,m(g) = Il,m—l(gm—l) + [Im (@) - Im (gm—l)] H (32)
where for the piecewise Roche’s model
M, (0) = 2" e{a,. + -2 b,.xz} , My, (6) = M, (6) (33)
D,(f) = [a +Zbx J , D (0) = Di(0) (34)
1.(,9):.82/5[&&)62} L,(0)=1,0), (35)
i\~ 3 v 5 7 + L1 1 4

starting from the first shell (0 < ¢ < /). In these formulae ¢ ; G=1,2,...m-1) are the fixed radius-

vectors, where jumps of radial density are presupposed. The recurrence formulae for gravity is based
on the expressions (3) and (31):
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4. %-G

gl,m(e) = e ' Dl,m(z) s (Zm—l < [ < R) H (36)

again starting from the first shell.
For the recurrence formulae of the seismic parameter @ and it jumps first we shall find
dinp,(¢) 2t
it Rp()
Further by applying the Williamson-Adams equation (13) for the piecewise model (29) in
view of (38) after some manipulations we get

2
@, (1) = -2
2-n-G-R*
T
By the definition (5) the parameter ® must be always positive and we shall consider the ratio
D, ; (Ej—l) _ b, Py (Ej—l)
D, (gj—l) - b, piy (Ej‘l)

which must be positive for each boundary of two shells. From this inequality together with (9), (28)
(for one shell) we come to a remarkable results: all coefficients a;will be positive and all coefficients b;
will be negative for the piecewise Roche’s model of density.

Finally we may compute the seismic jump of @ at the j — boundary

AD = Aq)i,iﬂ =0, (éj)"q)m (Ej): _&n_-:;G_-I_QiDU (ej )[ﬂ“&i} ‘ 41)

@37

pm(e) Dl,m(e) ’ (Em—l = E s R) > (38)

@, ()= - p.(0)- D,(0), @, () =@,(0) . (0= 1<) (39)

>0, (40)

bi bi+1

This formula may use as the additional condition between the coefficients of every shell,
because the left hand side of (41) is known from seismic data.

8. PIECEWISE ROCHE’S SOLUTION FOR RADIAL DENSITY MODEL

Now we recollect (see, for instance, Moritz, 1990) that ,any global density law must satisfy
three basic conditions:

1. It must provide the correct total mass or, equivalently, the mean density;

2. It must give the value for the mean moment of inertia;

3. It must reproduce the density at the base of continental layers, which may be taken as about 3.2 to
3.3 g/em®, e.g. the conventional density just below Mohorovichich discontinuity much used in
isostasy p;=3.27 g/cm® «,

These three conditions may lead to the construction of the continuos radial density
distribution. First two conditions can apply for the determination of the continuos Roche’s model. In

this case we get a remarkable expression for the coefficient & of such a model

5
b= E[D ‘"po] . (42)
a =Py

Nevertheless, we may add according to (39) the additional condition for density at the origin,
which will depend on the observe value of ®:

40 Marchenko A.N.



2-n-G-R? 42
3.,
And use then four conditions for determinations of the coefficients of two (M = 2) models

(29). We presuppose also that the first model will describe the density on the interval [0, 3480km] and
the second model is valid for the interval [3480km, 6371km]. Now according to three condition listed

above we get
3 3 5 5
(3 -] 500 -2
R R 5 \R 5 R
5 5 7 7
RO TR TR R
D|5\R 5 R 7\ R 7 R

a, +b, =p,, (46)
where I; = IIMR” is the dimensionless Earth’s moment of inertia, p, is the surface density, D=D(R) is

the Earth’s mean density. Because the equation (43) is non-linear, on the first step we shall add the
following linear equation

®(0) = - 43)

[
>

@4

a, =p,, @7
and will solve this system (44)—(47) with respect to the density (47) at the origin. On the second step
the non-linear equation (43) may be solved numerically in a traditional way. After iterations, we can
get these four coefficients and compute now the basic jump of the Earth’s density. To our own surprise
such solution of the equations (43)—(46) together with the seismic data alone provided finally (in this
step) the density jump at the core/mantle boundary Ap = 4.454 g/cm’, the density at the centre mass of
the Earth p = 12.953 g/cm® (see Figure 1), and a remarkable stable restoring of the behavior of the
gravity distribution (see Figure 3) corresponding to various number of shells of the Earth’s
stratification.

For this reason after the creation of these two models we may continue such approach for the
further division of the Earth and determination of the set of the models (29) which should be agreed
with the whole initial information about the seismic data.

Thus on the first step we may get a preliminary solution for every shell separately by the
“golden section” technique (in view of the necessity of the Earth’s stratification and solution of the
non-linear equation (43)). The second step consists of the readjusiment of these independent pieces of
density to the piecewise density distribution which agrees with the set of the seismic data and other
additional information about fundamental constants.

Regarding the discontinuities in the Table 1. Piecewise Roche’s density model (m=7)
seismic velocities as sampled for PREM, we

are led to the following separation into | Shell a; b; £, km Dji?rslgy
shells (Table 1) as a particular case. Based i o6l | 3891

on this separation a  mathematical 2 12483 | -8343 1221.5 | 0.558
description of the Earth’s density based on 3 6370 | 2574 | 3480.0 | 4392
the piecewise Roche’s model was derived 4 6058 | -2577 | >701.0 | 0314
and presented in Tablel. This model (see, 5 5784 | 2524 | 9710 | 0.228
Figure 2) can be used further for an 6 6.057 20903 | 6151.0 | 0.080
improvement as a starting model using 7 6.622 3952 | 63466 | 0476
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another — exponential or other solution of Williamson-Adams equation. Figure 2 reflects its good
agreement with the PREM-density model, with the exception of the crust shells: we try to create on the
final step a “geodetic version” of the Earth density profile with the surface density p,=2.67 g/cm’.

13,09 " s
4 7 e T N
S
10.75 .
8.42] !
PREM model
6.09 3
373 Piecewise Roche’s model R
km !
1.42 !
T 1 T 1 T T i 1 i 1
0.0 1274 2548 3823 5097 6371

Figure 1. Comparison of the PREM-density p [g/cm’], with the two-
piecewise density model.

P
13.09 e 3
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10.75-
8.42
6.09- _ PREM model
3.75- ~\
] Piecewise Roche’s model ~ l
1.42 T T T T T T T T T :
0 1274 2548 3823 5097 6371 km

Figure 2. Comparison of the PREM-density p [g/cm’], with the final
density model.
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Comparison of the internal gravity g [m/s’] distribution for various
stratifications.
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